Miller_Rabin素数测试

Miller_Rabin素数测试

算法用处

Miller_Rabin为随机算法,有一定的误判率,算法中会有常数S,S越大算法耗时越大,误判率越小。S这里选20

误判率 = 1 / 2^S,大概等于9*10^-7

由于之前的素数判断通常经过埃氏筛法,线性筛选出素数再在O(1)的时间内判断,但是素数很大的时候打表非常耗时,非常耗空间,所以用Miller_Rabin素数测试,虽然有很小的误判率,但是效率很高,O(logN)就能出结果,有很高的实用性。但是对于那些极其注重安全的地方不能使用。应为例如核电站控制,核武器控制。一单出错就容易发生严重后果。这里扯远了。。。。


算法原理

1.费马小定理

对于素数p来说任意一个整数a,总是满足a^p≡a(mod p),特别的当gcd(a, p) = 1(最大公约数)的时候又有a^(p - 1)≡1(mod p)。所以a^k≡a^(k % (p - 1)) (mod p)

2.二次探测定理

当存在X,取值范围为0 < x < p时,x^2≡1(mod p)的解为x = 1或x = p - 1。因为除了1和p-1在mod p的情况下的逆元等于自己,其他的逆元都不是自身。   (有兴趣深入的话请看威尔逊定理,这里只是教怎么使用和编码)


算法过程

首先我们根据原理1,找出这个数a,那么求的就是a^(p - 1),这里将p - 1里面的所有的2提取出来变成形如p - 1 = d * 2^t,原式就成为了(a ^ d)^(2^t)那么就成了将a^d平方t次,那么每次平方的时候就可以使用二次探测加强判定准确性,最后结果看是不是和1对于p同余,如果不满足肯定是合数。

这里就涉及到快速幂以及为了防止溢出的类似快速幂的乘法,可以看multi_mod()和pow_mod()。

如果Miller_Rabin测试出来某个数是合数的时候它一定是合数,如果是素数的话有1 / 2^S的概率为合数


HDU 2138关于素数的可以试试自己写的Miller_rabin测试

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<ctime>
#include<cstdlib>
#define ll __int64

const int S = 20;//素数测试误判率=1 / 2^S   S越大误差率越小

using namespace std;


ll multi_mod(ll a, ll b, ll p){
    ll ret = 0, q = a;
    while(b){
        if(b & 1){
            ret = (ret + q) % p;
        }
        q = (q + q) % p;
        b >>= 1;
    }
    return ret % p;
}

ll pow_mod(ll a, ll b, ll p){
    ll ret = 1, q = a;
    while(b){
        if(b & 1){
            ret = ret * q % p;
        }
        q = q * q % p;
        b >>= 1;
    }
    return ret % p;
}

bool Miller_Rabin(ll p){
    int i, j, k;
    ll u, t, x, y;
    if(p == 2)  return true;
    if(p % 2 == 0 || p == 1) return false;
    u = p - 1, t = 0;
    while(u % 2 == 0){
        t++;
        u >>= 1;
    }
    for(int i = 0; i < S; i++){
        x = rand() % (p - 1) + 1;
        x = pow_mod(x, u, p);
        for(j = 0; j < t; j++){
            y = x;
            x = multi_mod(x, x, p);
            if(x == 1 && y != 1 && y != p - 1){
                return false;
            }
        }
        if(x != 1)  return false;
    }
    return true;
}



int main(){
    int i, j, k;
    ll a, b, p;
    int n;
    srand(time(NULL));
    while(cin >> n){
        int ans = 0;
        for(i = 0; i < n; i++){
            cin >> p;
            if(Miller_Rabin(p)) ans++;
        }
        cout << ans << endl;
    }
    return 0;
}




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个简单的Miller-Rabin素数测试的Java代码实现: ```java import java.math.BigInteger; import java.util.Random; public class MillerRabinPrimeTest { private static final int CERTAINTY = 10; // 检测次数,值越大越准确 public static boolean isPrime(BigInteger n) { if (n.compareTo(BigInteger.ONE) == 0 || n.compareTo(BigInteger.valueOf(2)) == 0) { return true; } if (n.compareTo(BigInteger.valueOf(2)) < 0 || n.mod(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) { return false; } int r = 0; BigInteger d = n.subtract(BigInteger.ONE); while (d.mod(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) { d = d.divide(BigInteger.valueOf(2)); r++; } Random rand = new Random(); for (int i = 0; i < CERTAINTY; i++) { BigInteger a = new BigInteger(n.bitLength() - 1, rand).add(BigInteger.ONE); BigInteger x = a.modPow(d, n); if (x.equals(BigInteger.ONE) || x.equals(n.subtract(BigInteger.ONE))) { continue; } boolean isPrime = false; for (int j = 0; j < r - 1; j++) { x = x.modPow(BigInteger.valueOf(2), n); if (x.equals(BigInteger.ONE)) { return false; } if (x.equals(n.subtract(BigInteger.ONE))) { isPrime = true; break; } } if (!isPrime) { return false; } } return true; } public static void main(String[] args) { BigInteger n = new BigInteger("123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100"); if (isPrime(n)) { System.out.println(n + " is a prime number."); } else { System.out.println(n + " is not a prime number."); } } } ``` 该示例代码使用了Java的BigInteger类来处理大数运算,实现了Miller-Rabin素数测试算法。代码中的isPrime()方法接收一个BigInteger类型的参数n,返回一个布尔值,用于判断n是否为素数。该方法的实现过程如下: 1. 如果n等于1或2,则返回true,因为1和2都是素数; 2. 如果n小于2或为偶数,则返回false,因为素数必须大于等于2且不能是偶数; 3. 计算$d=\frac{n-1}{2^r}$,其中$r$为一个正整数,$d$为一个奇数; 4. 对于$CERTAINTY$次循环,每次循环中,随机生成一个大于1且小于$n$的整数$a$,计算$x=a^d\mod n$; 5. 如果$x=1$或$x=n-1$,则跳过本次循环; 6. 对于$j=1$到$j=r-1$,计算$x=x^2\mod n$; - 如果$x=1$,则$n$不是素数,返回false; - 如果$x=n-1$,则跳过本次循环; 7. 如果以上循环中都没有返回false,则$n$很可能为素数,返回true。 在代码中,$CERTAINTY$的值设为10,这意味着进行10次Miller-Rabin测试,可以得到一个非常高的准确率。如果需要更高的准确率,可以增加$CERTAINTY$的值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值