Miller-Rabin素数测试算法

【作用】

有时候我们想快速的知道一个数是不是素数,而这个数又特别的大导致 O( \sqrt{n} ) 的算法不能通过,这时候我们可以对其进行 Miller-Rabin 素数测试,可以大概率测出其是否为素数。

【两个基础理论】

(1)费马小定理:当 p 为质数,有 a^{p-1}\equiv 1(mod \: \, p),不过反过来不一定成立,也就是说,如果 ap 互质,且 a^{p-1}\equiv 1(mod \: \, p),不能推出 p 是质数,比如 Carmichael 数(这个就自行百度吧)

(2)二次探测:如果 p 是一个素数,0 < x < p, 则方程 x^{2}\equiv 1(mod\: \, p) 的解为 x = 1x = p - 1

【两个基本理论的证明】

证明转载费马小定律&二次探测的证明

【算法流程】

(1)对于偶数和 0,1,2 可以直接判断。

(2)设要测试的数为 x,我们取一个较小的质数 a,设 s,t,满足 2^s\cdot t=x-1(其中 t 是奇数)。

(3)我们先算出 a^t,然后不断地平方并且进行二次探测(进行 s 次)。

(4)最后我们根据费马小定律,如果最后 a^{x-1}\not\equiv 1(mod \:\, x),则说明 x 为合数。

(5)多次取不同的 a 进行 Miller-Rabin 素数测试,这样可以使正确性更高

【备注】

(1)我们可以多选择几个 a,如果全部通过,那么 x 大概率是质数。

(2)Miller-Rabin 素数测试中,“大概率”意味着概率非常大,基本上可以放心使用。

(3)当 a 取遍小等于 30 的所有素数时,可以证明 int 范围内的数不会出错。

(4)代码中我用的 int 类型,不过实际上 Miller-Rabin 素数测试可以承受更大的范围。

(5)另外,如果是求一个 long long 类型的平方,可能会爆掉,因此有时我们要用“快速积”,不能直接乘。

【代码】

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int prime[10]={2,3,5,7,11,13,17,19,23,29};
int Quick_Multiply(int a,int b,int c)  //快速积(和快速幂差不多) 
{
    long long ans=0,res=a;
    while(b)
    {
        if(b&1)
          ans=(ans+res)%c;
        res=(res+res)%c;
        b>>=1;
    }
    return (int)ans;
}
int Quick_Power(int a,int b,int c)     //快速幂,这里就不赘述了 
{
    int ans=1,res=a;
    while(b)
    {
        if(b&1)
          ans=Quick_Multiply(ans,res,c);
        res=Quick_Multiply(res,res,c);
        b>>=1;
    }
    return ans;
}
bool Miller_Rabin(int x)     //判断素数 
{
    int i,j,k;
    int s=0,t=x-1;
    if(x==2)  return true;   //2是素数 
    if(x<2||!(x&1))  return false;     //如果x是偶数或者是0,1,那它不是素数 
    while(!(t&1))  //将x分解成(2^s)*t的样子 
    {
        s++;
        t>>=1;
    }
    for(i=0;i<10&&prime[i]<x;++i)      //随便选一个素数进行测试 
    {
        int a=prime[i];
        int b=Quick_Power(a,t,x);      //先算出a^t
        for(j=1;j<=s;++j)    //然后进行s次平方 
        {
            k=Quick_Multiply(b,b,x);   //求b的平方 
            if(k==1&&b!=1&&b!=x-1)     //用二次探测判断 
              return false;
            b=k;
        }
        if(b!=1)  return false;   //用费马小定律判断 
    }
    return true;   //如果进行多次测试都是对的,那么x就很有可能是素数 
}
int main()
{
    int x;
    scanf("%d",&x);
    if(Miller_Rabin(x))  printf("Yes");
    else  printf("No");
    return 0;
}

### 回答1: Miller-Rabin素性测试算法是一种用于判断一个数是否为质数的算法。该算法基于费马小定理,使用随机数进行迭代运算,可以高效地判断一个数是否为质数。 具体来说,该算法将要判断的数记作n,随机选取一个小于n的正整数a,将a与n进行求模运算得到b。如果b等于0或者b等于n-1,则继续选择下一个a。否则,将b平方并对n取模,得到c。如果c等于1或者c等于n-1,则继续选择下一个a。否则,不断平方c并对n取模,直到c等于1或者迭代次数达到了一定阈值。如果c等于1,则n可能是一个合数;如果迭代过程中出现了c等于n-1的情况,则n很可能是一个质数。 为了提高判断的准确性,Miller-Rabin算法会进行多次随机迭代,每次选取不同的随机数a。随机迭代次数越多,判断结果的准确性越高,但计算时间也越长。 总之,Miller-Rabin素性测试算法是一种高效、准确的判断一个数是否为质数的算法,被广泛应用于密码学、计算机科学等领域。 ### 回答2: Miller-Rabin素性测试算法是一种用于判断一个数是否为素数的快速算法。该算法基于费马小定理,利用随机数的特性来判断一个数是否为素数。该算法的优势在于速度快且准确率高,同时能够应对大整数的素性测试。 该算法的具体步骤如下: 1. 首先确定待测试的数n,如果n为偶数,则直接判断n是否等于2,如果是则n为素数,因为2是最小的质数。 2. 若n为奇数,则写成n-1=2^r * d的形式,其中r为非负整数,d为奇数。 3. 接着随机选取一个整数a,且1 < a < n-1。计算a^d mod n,如果结果等于1或n-1,则可以认为n有很大的可能是素数,结束测试。 4. 若结果不等于1或n-1,则重复计算a^(2^j*d) mod n,直到出现下面两种情况之一:结果为1,或者出现了j=0,1,...,r-1时,结果为n-1。 5. 如果满足上述两种情况之一,则认为n有很大的可能是素数,结束测试。否则,重新随机选取一个a,重复上述操作进行测试。 需要说明的是,该算法的准确率可以通过多次测试进行提高。一般来说,重复进行10~20次检验,即可认为检验结果是正确的。 总之,Miller-Rabin素性测试算法是一种简单高效的素数测试算法,可以广泛应用于需要高精度计算的场合。它在加密、密码学等领域中,有着重要的应用价值。 ### 回答3: Miller-Rabin素性测试算法是一种用于判断一个数是否为素数算法,名字来源于两位发明者:Gary L. Miller和Michael O. Rabin。与其它素数检测算法不同,Miller-Rabin素性测试算法有极高的概率能够正确地识别素数,其准确率可以达到误判的可能性小于$\frac{1}{4}$。 Miller-Rabin素性测试算法的基本原理是利用了费马小定理和欧拉判别法,即对于一个素数$p$和$a<p$,有$a^{p-1} \equiv 1 \pmod{p}$,而对于合数$n=pq$,其中$p,q$为大于1的素数,则在模n下,$a^{n-1} \equiv 1 \pmod{n}$,并且除了一些“小概率事件”外,$a^{(n-1)/2} \equiv \pm 1 \pmod{n}$。 Miller-Rabin 素性测试算法的流程如下: 1.将$n-1$分解成$2^sd$的形式,其中$d$是奇数。 2.对于给定的$a<n$,利用费马小定理,计算$a^d \pmod{n}$。 3.如果$a^d \equiv 1 \pmod{n}$,则认为$n$可能是一个素数算法结束。 4.对于$0\leq r \leq s-1$,如果$a^{2^rd} \equiv -1 \pmod{n}$,则认为$n$可能是一个素数算法结束。 5.如果$a^{2^sd} \not \equiv 1 \pmod{n}$或$a^{2^{r}d} \not \equiv -1 \pmod{n}$(其中$0\leq r \leq s-1$),则认为$n$不是素数算法结束。 通过多次进行以上的步骤,可以提高算法的准确率。 Miller-Rabin素性测试算法是一种在计算机领域经常使用的算法,其特点是计算量较小、正确率较高、可扩展性好。在计算机安全领域,该算法被广泛地应用于RSA算法中,用于加密和解密数据。虽然该算法在某些情况下会出现一定的偏差,但是通过多次计算,可以达到一个非常高的准确率。因此,在实际应用中,Miller-Rabin素性测试算法是一个非常实用的工具。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值