机器学习中的线性代数

本文介绍了机器学习中线性代数的基础知识,包括标量、向量、矩阵和张量的概念,矩阵和向量的乘法,单位矩阵和逆矩阵,线性相关与生成子空间,范数,特殊矩阵类型,特征分解,迹运算和行列式。这些概念在深度学习和算法中至关重要。

第二章 机器学习中的线性代数知识

线性代数作为数学中的一个重要的分支,广发应用在科学与工程中。掌握好线性代数对于理解和从事机器学习算法相关的工作是很有必要的,尤其是对于深度学习而言。因此,在开始介绍深度学习之前,先集中探讨一些必备的线性代数知识。

2.1 标量,向量,矩阵和张量

标量(scalar):一个标量就是一个单独的数。用斜体表示标量,如 sR.

向量(vector):一个向量是一列数,我们用粗体的小写名称表示向量。比如 x,将向量x 写成方括号包含的纵柱:

x=x1x2xn

矩阵(matrix):矩阵是二维数组,我们通常赋予矩阵粗体大写变量名称,比如 A 。如果一个矩阵高度是 m ,宽度是 n ,那么说 ARm×n 。一个矩阵可以表示如下:
A=[x11x21x12x22]

张量(tensor):某些情况下,我们会讨论不止维坐标的数组。如果一组数组中的元素分布在若干维坐标的规则网络中,就将其称为张量。用 A 表示,如张量中坐标为 (i,j,k) 的元素记作 Ai,j,k

转置(transpose):矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线称为主对角线(main diagonal)。将矩阵A的转置表示为A。定义如下:

(A)i,j=Aj,i

A=x11x21x31x12x22x32A=[x11x21x21x22
评论 5
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值