HDU -- 3572 Task Schedule(最大流,判满流)

原创 2015年07月10日 17:23:01

题目大意:

有n个任务,m个机器,一个机器在同一时间只能做一个任务,每个任务要花费一个机器p天,必须在s天之后开始,在e天之前结束,一个机器一次只能处理一个任务,一个任务可以在不同机器上分段执行,判断在规定时间内能否完成全部任务;

思路分析:

①:设立一个超级源点s,连向每个任务,容量为完成该任务所需的时间;

②:若每个任务可以在si和ei处理,则让该任务分别向这些天连一条边,容量为1,代表一个机器一次只能处理一个任务(一个任务在一个时刻只能由一个机器处理);

③:每个时间连向汇点t,容量为m,表示一天最多只能处理m个任务(有m个机器);

代码实现:

SAP:

#include<cstdio>
#include<cstring>
#include<queue>
#include<iostream>
#define Max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=1510;
const int M=502000;
const int INF=0x3f3f3f3f;
int n,m,s,t,top,head[N],gap[N],cur[N],pre[N],dis[N];

struct Edge{
    int to,next,flow;
}edge[M];

void Addedge(int from,int to,int val){
    edge[top].to=to,edge[top].next=head[from],edge[top].flow=val,head[from]=top++;
    edge[top].to=from,edge[top].next=head[to],edge[top].flow=0,head[to]=top++;
}

void Bfs(){
    queue<int> q;
    memset(gap,0,sizeof(gap));
    memset(dis,-1,sizeof(dis));
    gap[0]=1,dis[t]=0;
    q.push(t);
    while(!q.empty()){
        int u=q.front();
        q.pop();
        for(int i=head[u];i+1;i=edge[i].next){
            if(dis[edge[i].to]==-1){
                dis[edge[i].to]=dis[u]+1;
                gap[dis[edge[i].to]]++;
                q.push(edge[i].to);
                //cout<<edge[i].to<<" "<<dis[edge[i].to]<<endl;
            }
        }
    }
}

int Sap(){
    Bfs();
    memset(pre,-1,sizeof(pre));
    for(int i=0;i<=t;++i) cur[i]=head[i];
    int u=s,i,cur_flow,max_flow=0,neck,tmp;
    while(dis[s]<=t){
        if(u==t){
            cur_flow=INF;
            for(int i=s;i!=t;i=edge[cur[i]].to){
                if(cur_flow>edge[cur[i]].flow){
                    neck=i;
                    cur_flow=edge[cur[i]].flow;
                }
            }
            for(int i=s;i!=t;i=edge[cur[i]].to){
                tmp=cur[i];
                edge[tmp].flow-=cur_flow;
                edge[tmp^1].flow+=cur_flow;
            }
            max_flow+=cur_flow;
            u=neck;
        }
        int i;
        for(i=cur[u];i!=-1;i=edge[i].next)
            if(edge[i].flow&&dis[u]==dis[edge[i].to]+1) break;
        if(i!=-1){
            cur[u]=i;
            pre[edge[i].to]=u;
            u=edge[i].to;
        }else{
            if(--gap[dis[u]]==0) break;
            cur[u]=head[u];
            int mindis=n;
            for(i=head[u];i!=-1;i=edge[i].next){
                if(edge[i].flow&&mindis>dis[edge[i].to])
                    mindis=dis[edge[i].to];
            }
            dis[u]=mindis+1;
            gap[dis[u]]++;
            if(u!=s) u=pre[u];
        }
    }
    return max_flow;
}

int main(){
   int T,si,pi,ei,cnt=0;
   scanf("%d",&T);
   while(T--){
       memset(head,-1,sizeof(head));
       top=0,s=0,t=0;
       int day=0,sum_time=0;
       scanf("%d%d",&n,&m);
       for(int i=1;i<=n;++i){
           scanf("%d%d%d",&pi,&si,&ei);
           sum_time+=pi;
           Addedge(s,i,pi);
           day=Max(day,ei);
           for(int j=si;j<=ei;++j)
               Addedge(i,j+n,1);
       }
       t=n+day+1;
       for(int i=1;i<=day;++i)
           Addedge(i+n,t,m);
       int res=Sap();
       if(res==sum_time) printf("Case %d: Yes\n\n",++cnt);
       else printf("Case %d: No\n\n",++cnt);
   }
}


DINIC:

#include<cstdio>
#include<cstring>
#include<queue>
#include<iostream>
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=1510;
const int M=502000;
const int INF=0x3f3f3f3f;
int n,m,s,t,top,head[N],dis[N];

struct Edge{
    int to,next,flow;
}edge[M];

void Addedge(int from,int to,int val){
    edge[top].to=to,edge[top].next=head[from],edge[top].flow=val,head[from]=top++;
    edge[top].to=from,edge[top].next=head[to],edge[top].flow=0,head[to]=top++;
}

int Bfs(){
    queue<int> q;
    memset(dis,-1,sizeof(dis));
    dis[s]=0;
    q.push(s);
    while(!q.empty()){
        int u=q.front();
        if(u==t) return 1;
        q.pop();
        for(int i=head[u];i+1;i=edge[i].next){
            if(dis[edge[i].to]==-1&&edge[i].flow){
                dis[edge[i].to]=dis[u]+1;
                q.push(edge[i].to);
            }
        }
    }
    return 0;
}

int Dinic(int u,int sum){
    if(u==t) return sum;
    int max_flow=0;
    for(int i=head[u];i+1;i=edge[i].next){
        if(dis[edge[i].to]==dis[u]+1&&edge[i].flow){
            int a=Dinic(edge[i].to,Min(sum-max_flow,edge[i].flow));
            edge[i].flow-=a;
            edge[i^1].flow+=a;
            max_flow+=a;
            if(max_flow==sum) return max_flow;
        }
    }
    if(!max_flow) dis[u]=-1;
    return max_flow;
}

int main(){
   int T,si,pi,ei,cnt=0;
   scanf("%d",&T);
   while(T--){
       memset(head,-1,sizeof(head));
       top=0,s=0,t=0;
       int day=0,sum_time=0;
       scanf("%d%d",&n,&m);
       for(int i=1;i<=n;++i){
           scanf("%d%d%d",&pi,&si,&ei);
           sum_time+=pi;
           Addedge(s,i,pi);
           day=Max(day,ei);
           for(int j=si;j<=ei;++j)
               Addedge(i,j+n,1);
       }
       t=n+day+1;
       for(int i=1;i<=day;++i)
           Addedge(i+n,t,m);
       int res=0;
       while(Bfs()){
           res+=Dinic(s,INF);
       }
       if(res==sum_time) printf("Case %d: Yes\n\n",++cnt);
       else printf("Case %d: No\n\n",++cnt);
   }
}



版权声明:欢迎转载,转载请注明出处

Hdu 3572 Task Schedule [最大流] 任务分配,判断满流

题目意思: 给出 N 件任务和 M台机器, 这N件任务都一个限制: 必须在 [S,E] 之间完成, 而且完成的时间不能超过 P. 一台机器每天只能做意见任务, 不过庆幸的是: 任务是可以拆分的,...

HDU 3572 Task Schedule ([最大流]任务分配,判断满流)

题意:有M个机器,有N个任务。每个任务必须在Si 或者以后开始做,在Ei 或者之前完成,完成任务必须处理Pi 个时间单位。其中,每个任务可以在任意(空闲)机器上工作,每个机器的同一时刻只能工作一个任务...

hdu 3572 Task Schedule ( 最大流 + 满流)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3572 Task Schedule Time Limit: 2000/1000 MS (Jav...

hdu3572-Task Schedule(最大流(ISAP),是否满流)

题目来源:http://howproblem.php?pid=3572题意给出多个任务,起始日期,终止日期,以及每个任务的任务量(一天里一台机器只能做其中一个任务的一点任务量),,问在各自的截止日期前...

HDU3572Task Schedule(任务分配/最大流判断满流)

链接:点击打开链接 题意:有M个机器(代表一天可以同时干M天的工作),有N个任务。每个任务必须在Si或者以后开始做,在Ei或者之前完成,完成每个任务必须处理Pi个时间单位,且每台机器每个单位时刻只能...
  • Rain722
  • Rain722
  • 2017年01月18日 15:10
  • 134

HDU_3572_Task Schedule(最大流)

题意:给出N个任务,M个机器,每天每台机器只能处理一件事,接下来N行,每行有p s e,分别表示这个任务要用p天,要在s~e天完成,问你这所有任务能不能完成。 分析:最大流问题。建立最大流模型,然后判...

hdu 3572 Task Schedule(最大流)

题目: Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/...

hdu3572--Task Schedule(最大流+两种优化方法,dinic)

Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

hdu 3572 Task Schedule 最大流 Dinic算法,,卡时间。。建图非常有讲究

Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc...

HDU3572Task Schedule(最大流 ISAP比较快)建图方法不错

Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU -- 3572 Task Schedule(最大流,判满流)
举报原因:
原因补充:

(最多只允许输入30个字)