[网络流24题] 09 方格取数问题 (二分图点权最大独立集,最小割)

题目大意:

在有一个m*n个方格的棋盘中, 每个方格有一个正整数。现在要从方格中取数, 是任意2个数所在的方格没有公共边,且取出数的总和最大, 求出最大的数字总和最大;

思路分析:

<问题分析>

二分图点权最大独立集,转化为最小割模型,从而用最大流解决。

<建模方法>

首先把棋盘黑白染色,使相邻格子颜色不同,所有黑色格子看做二分图X集合中顶点,白色格子看做Y集合顶点;设立源点s,汇点t,对于一个方格(i,j),我们可以判断(i+j)的奇偶性,相邻的格子的奇偶性一定不同,也就做到了染色;

①:从s向X集合中每个顶点连接一条边,容量为格子中数值。
②:从Y集合中每个顶点向t连接一条边,容量为格子中数值。
③:相邻黑白格子Xi,Yj之间,从Xi向Yj连接一条边,容量为INF。

求出网络最大流,要求的结果就是所有格子中数值之和减去最大流量。

<建模分析>
这是一个二分图最大点权独立集问题,就是找出图中一些点,使得这些点之间没有边相连,这些点的权值之和最大。独立集与覆盖集是互补的,求最大点权独立集可以转化为求最小点权覆盖集(最小点权支配集)。最小点权覆盖集问题可以转化为最小割问题解决。

结论:最大点权独立集 = 所有点权 - 最小点权覆盖集 = 所有点权 - 最小割集 = 所有点权 - 网络最大流。

代码实现:

#include<cstdio>
#include<cstring>
#include<queue>
#include<iostream>
#define Max(a,b) ((a)>(b)?(a):(b))
using namespace std;

const int N=910, M=9010000, INF= 0x3f3f3f3f;
int n, m, s, t, top;
int head[N], gap[N], cur[N], dis[N], pre[N], flag[N], vis[N], num[35][35];
int dx[4] = {0, 0, -1, 1}, dy[4] = {-1, 1, 0, 0};

struct Edge{
    int to, next, flow;
    Edge(int _to = 0, int _next = 0, int _flow = 0):to(_to), next(_next), flow(_flow){}
}edge[M];

void Addedge(int from, int to, int flow){
    edge[top] = Edge(to, head[from], flow);
    head[from] = top++;
    edge[top] = Edge(from, head[to], 0);
    head[to] = top++;
}

void Bfs(){
    queue<int> q;
    memset(gap, 0, sizeof(gap));
    memset(dis, -1, sizeof(dis));
    dis[t] = 0, gap[0] = 1; q.push(t);
    while(!q.empty()){
        int u = q.front(); q.pop();
        for(int i = head[u]; i+1; i = edge[i].next){
            if(dis[edge[i].to] == -1){
                dis[edge[i].to] = dis[u] + 1;
                gap[dis[edge[i].to]] ++;
                q.push(edge[i].to);
            }
        }
    }
}

int Sap(){
    Bfs();
    memset(pre, -1, sizeof(pre));
    for(int i = s; i <= t; ++i) cur[i] = head[i];
    int u = s, cur_flow, max_flow = 0, neck, tmp;
    while(dis[s] <= t){
        if(u == t){
            cur_flow = INF;
            for(int i = s; i != t; i = edge[cur[i]].to){
                if(cur_flow > edge[cur[i]].flow){
                    cur_flow = edge[cur[i]].flow;
                    neck = i;
                }
            }
            for(int i = s; i != t; i = edge[cur[i]].to){
                tmp = cur[i];
                edge[tmp].flow -= cur_flow;
                edge[tmp^1].flow += cur_flow;
            }
            max_flow += cur_flow;
            u = neck;
        }
        int i;
        for(i = cur[u]; i + 1; i = edge[i].next)
            if(edge[i].flow && dis[u] == dis[edge[i].to] + 1) break;
        if(i != -1){
            cur[u] = i;
            pre[edge[i].to] = u;
            u = edge[i].to;
        }else{
            if(--gap[dis[u]] == 0) break;
            cur[u] = head[u];
            int mindis = t;
            for(int i = head[u]; i + 1; i = edge[i].next)
                if(edge[i].flow && mindis > dis[edge[i].to]) mindis = dis[edge[i].to];
            dis[u] = mindis + 1;
            gap[dis[u]]++;
            if(u != s) u = pre[u];
        }
    }
    return max_flow;
}


int main(){
    freopen("grid.in", "r", stdin);
    freopen("grid.out", "w", stdout);
    scanf("%d%d", &n, &m);
    memset(head, -1, sizeof(head));
    top = s = 0; t = n * m + 1;
    int sum = 0;
    for(int i = 1; i <= n; ++i){
        for(int j = 1; j <= m; ++j){
            scanf("%d", &num[i][j]);
            sum += num[i][j];
            if((i + j) % 2 == 0) Addedge(s, (i-1)*m+j, num[i][j]);
            else Addedge((i-1)*m+j, t, num[i][j]);
        }
    }
    int x, y;
    for(int i = 1; i <= n; ++i){
        for(int j = 1; j <= m; ++j){
            if((i + j) % 2) continue;
            for(int k = 0; k < 4; ++k){
                x = i + dx[k], y = j + dy[k];
                if(x < 1 || x > n || y < 1 || y > m) continue;
                if((i + j) % 2 == 0) Addedge((i-1)*m+j, (x-1)*m+y, INF);
                else Addedge((x-1)*m+y, (i-1)*m+j, INF);
            }
        }
    }
    printf("%d\n", sum - Sap());
}


“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

Ac-try

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值