zoj 1642 Match for Bonus[dp,lcs]

题目链接:点击打开链接

 最长公共子序列。每一个字符都有一个权重。小小改一下就好。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
using namespace std;

const int N = 2005;
int dp[N][N];
map<char, int> M;
int lcs(char *s1, char *s2){
    int len1 = strlen(s1), len2 = strlen(s2);
    memset(dp, 0, sizeof(dp));
    for(int i = 1; i <= len1; i ++){
        for(int j = 1; j <= len2; j ++)
        if(s1[i - 1] == s2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + M[s1[i - 1]];
        else dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
    }
    return dp[len1][len2];
}

int main(){
    int n;
    while(~scanf("%d", &n)){
        char c;
        int d;
        for(int i = 1; i <= n; i ++){
            getchar();
            scanf("%c %d", &c, &d);
            M[c] = d;
        }
        char str1[N], str2[N];
        scanf("%s %s", str1, str2);
        printf("%d\n",lcs(str1, str2));
    }
    return 0;
}

最长公共子序列很的简单,但是很久都没有接触过dp了。还是需要全面的发展的。

dp[i][j] 代表第一个序列的前i个元素和第二个序列的前j个元素最长公共子序列。

如果第一个序列的第i个元素和第二个序列的第j个元素相同,那么dp[i][j] = dp[i - 1][j - 1] + 1,也就是说第一个序列的前i个元素和第二个序列的前j个元素的最长公共子序列为第一个序列的前i - 1个元素和第二个序列的前j - 1个元素的最长公共子序列+1。

如果不同,第一个序列的前i个元素和第二个序列的前j个元素的最长公共子序列为第一个序列的前i - 1个元素和第二个序列的前j个元素的最长公共子序列和第一个序列的前i个元素和第二个序列的前j - 1个元素的最长公共子序列中的较大者。为最优解。


那么对于这道题来说,只不过是对于每一个字符加了一个权重而已。每次增加的不在是1,而是相同字符的权重。

dp也要搞。慢慢来。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值