# 用knn算法来预测喜爱程度

1、有一千组数据，前200作为测试数据，后800个作为样本数据，然后训练模型

2、然后吧特征变量归一化去增加数据的可靠性，同时调整k值的参数来提高预测的准确度

3，准确度达到一定程度后，然后输入用户数据来进行匹配最优的人

#! /usr/bin/env python
# -*- coding=utf-8 -*-
from numpy import *
import operator
from os import listdir
import matplotlib
import matplotlib.pyplot as plt
import time
import pdb
def classify0(inX, dataSet, labels, k=5):# k=3 表示分三类
# print "class lass -------------------------"
# print inX
# print dataSet #表示 后面 801的数据
# print labels  #表示 最后800数据的标签
# print "class end---------------------------------"
# pdb.set_trace()
dataSetSize = dataSet.shape[0]  #代表的是最后801个数据
# print "classift0"
# print dataSetSize
diffMat = tile(inX, (dataSetSize, 1)) - dataSet #把当前的扩展下，然后减去后面801个
#用欧氏距离来计算输入的数据和样本数据 801个进行计算距离

# print "处理前的矩阵"
# print diffMat
sqDiffMat = diffMat ** 2

# print "平方后的数据"
# print sqDiffMat

sqDistances = sqDiffMat.sum(axis=1)  #行相加求和
# print "矩阵预处理"
# print sqDistances
distances = sqDistances ** 0.5
# print "处理后的数据"
# print distances

sortedDistIndicies = distances.argsort()  # ascend sorted,

#排序后返回的是索引值
# print  "输入排序后的数据"
# print sortedDistIndicies
# return the index of unsorted, that is to choose the least 3 item
classCount = {}
for i in range(k):#让三个人去投票 然后说 他是谁，多者获胜
voteIlabel = labels[sortedDistIndicies[i]]   #返回第一个是多少号元素
print "VOTEVOTE"
print voteIlabel
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1  # a dict with label as key and occurrence number as value
print classCount
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) #然后根据 key值排序，求出三者之间投票最多的

'''descend sorted according to value, '''
print sortedClassCount[0][0]
return sortedClassCount[0][0]

def file2matrix(filename):
print "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
fr = open(filename)
# pdb.set_trace()
numberOfLines = len(L)  # get the number of lines in the file
print numberOfLines
returnMat = zeros((numberOfLines, 3))  # prepare matrix to return
print "初始化矩阵"
print returnMat
classLabelVector = []  # prepare labels return  初始化三维矩阵
index = 0
for line in L:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
# classLabelVector.append((listFromLine[-1]))
index += 1
fr.close()
print "生成的 label 列表"
print  classLabelVector
print type(returnMat)
ff = open("file.txt",'a')
ff.write(returnMat)
ff.close()
print "生成的三维数据矩阵"
print returnMat
return returnMat, classLabelVector   #前面是矩阵，后面是类别

#特征变量归一化
def autoNorm(dataSet):

#取出每一列的最小值，即每一个特征值得最小值
minVals = dataSet.min(0) #分别取三维中的最小的数
print "minvals"
print minVals

#取出每一列的最大值，即每一个特征值的最大值
maxVals = dataSet.max(0)#分别取三维中最大的数
print "maxvals"
print maxVals

#每一个特征变量的取值范围
ranges = maxVals - minVals
print "最大值减去最小值的范围"
print ranges
normDataSet = zeros(shape(dataSet))  #显示数组的属性
m = dataSet.shape[0]                 #显示数组的行数
print "显示数组的行数"
print m
normDataSet = dataSet - tile(minVals, (m, 1))#把minVals，行复制m次，列复制一次
normDataSet = normDataSet / tile(ranges, (m, 1))  # element wise divide
return normDataSet, ranges, minVals

#分类器测试
def datingClassTest(hoRatio=0.20):
# hold out 10%
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')  # load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)  #特征变量归一化
m = normMat.shape[0]
print  "what happend"
print m
numTestVecs = int(m * hoRatio)#输入 20%的案例   numTestVecs = 200 即取前200 个数据
errorCount = 0.0
print "what it is"
for i in range(numTestVecs):
classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 5)  #第一个表示第 i 个数据，然后第二个表示 （后800个数据）从nomTestVecs到最后的数据，第三个数据表示的当前数据的label
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %.2f%%" % (100 * errorCount / float(numTestVecs))
print 'testcount is %s, errorCount is %s' % (numTestVecs, errorCount)

def classifyPerson():
'''
input a person , decide like or not, then update the DB
'''
resultlist = ['not at all', 'little doses', 'large doses']
percentTats = float(raw_input('input the person\' percentage of time playing video games:'))
ffMiles = float(raw_input('flier miles in a year:'))
iceCream = float(raw_input('amount of iceCream consumed per year:'))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
normPerson = (array([ffMiles, percentTats, iceCream]) - minVals) / ranges
result = classify0(normPerson, normMat, datingLabels, 3)
print 'you will probably like this guy in:', resultlist[result - 1]

# update the datingTestSet
print 'update dating DB'
tmp = '\t'.join([repr(ffMiles), repr(percentTats), repr(iceCream), repr(result)]) + '\n'

with open('datingTestSet2.txt', 'a') as fr:
fr.write(tmp)

if __name__ == '__main__':
datingClassTest()
classifyPerson()
#handwritingClassTest()



• 本文已收录于以下专栏：

## 利用最近邻KNN算法对IRIS数据进行测试处理样例

• caojianhua2018
• 2017年11月30日 21:44
• 80

## KNN算法对新上市汽车评估分析

• NIeson2012
• 2016年01月13日 10:40
• 1167

## 非常值得收藏的 IBM SPSS Modeler 算法简介

IBM SPSS Modeler以图形化的界面、简单的拖拽方式来快速构建数据挖掘分析模型著称，它提供了完整的统计挖掘功能，包括来自于统计学、机器学习、人工智能等方面的分析算法和数据模型，包括如关联、分...
• chenjunji123456
• 2016年07月07日 13:56
• 7414

## KNN（K最邻近）算法

“KNN（K最邻近）算法”——数据分析、数据挖掘   (2012-12-01 20:06:16) 转载▼ 标签：  knn   最邻近算法   文...
• u014261987
• 2014年11月18日 14:50
• 1925

## KNN的一些总结

• u013058160
• 2015年11月22日 13:18
• 726

## KNN算法理解

• UESTC_C2_403
• 2017年07月07日 14:32
• 913

## 基于KNN的物品相似度的评分预测

• zengxiaosen
• 2017年02月22日 01:01
• 598

## kNN(K-Nearest Neighbor)最邻近规则分类

KNN最邻近规则，主要应用领域是对未知事物的识别，即判断未知事物属于哪一类，判断思想是，基于欧几里得定理，判断未知事物的特征和哪一类已知事物的的特征最接近； K最近邻(k-Nearest Neigh...
• xlm289348
• 2013年05月02日 16:26
• 82061

## 集体智慧编程——K近邻分类器预测价格

KNN最邻近规则，主要应用领域是对未知事物的识别，即判断未知事物属于哪一类，判断思想是，基于欧几里得定理，判断未知事物的特征和哪一类已知事物的的特征最接近；K最近邻(k-Nearest Neighbo...
• bcj296050240
• 2016年03月15日 22:24
• 787

## [机器学习实战]使用 scikit-learn 预测用户流失

• BaiHuaXiu123
• 2017年03月14日 22:19
• 4017

举报原因： 您举报文章：用knn算法来预测喜爱程度 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)