整数划分问题是算法中的一个经典命题之一
所谓整数划分,是指把一个正整数写成如下形式:
;(其中为正整数,并且),则为的一个划分。
如果中的最大值不超过,即,则称它属于的一个划分。这里我们记的划分的个数为;
例如当时,它有5个划分:;
注意:4=1+3和4=3+1被认为是同一个划分。
该问题是求出n的所有划分个数,即f(n,n)。下面我们考虑求f(n,m)的方法。
方法一:递归法
根据n和m的关系,考虑下面几种情况:
(1)当n=1时,不论m的值为多少(m>0),只有一种划分,即{1};
(2)当m=1时,不论n的值为多少(n>0),只有一种划分,即{1,1,....1,1,1};
(3)当n=m时,根据划分中是否包含n,可以分为两种情况:
- 划分中包含n的情况,只有一个,即{n};
- 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分;
因此,。
(4)当n<m时,由于划分中不可能出现负数,因此就相当于;
(5)当n>m时,根据划分中是否包含m,可以分为两种情况:
- 划分中包含m的情况,即,其中的和为,可能再次出现,因此是的m划分,因此这种划分个数为;
- 划分中不包含的情况,则划分中所有值都比小,即的划分,个数为;
因此,。
综合以上各种情况,可以看出,上面的结论具有递归定义的特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,而情况(5)为通用情况,属于递归的方法,其本质主要是通过减少n或m以达到回归条件,从而解决问题。
其递归表达式如下所示。
参考源码1.1(递归版本(较慢))
#include <stdio.h>
#define MAXNUM 100 //最高次数
//递归法求解整数划分
unsigned long GetPartitionCount(int n, int max)
{
if(n == 1 || max == 1)
{
return 1;
}
if(n < max)
{
return GetPartitionCount(n, n);
}
if(n == max)
{
return 1 + GetPartitionCount(n, n - 1);
}
else
{
return GetPartitionCount(n - max, max) + GetPartitionCount(n, max - 1);
}
}
int main(int argc, char **argv)
{
int n;
int m;
unsigned long count;
while(1)
{
scanf("%d", &n);
if(n<=0)
return 0;
m=n;
count = GetPartitionCount(n, m);
printf("%d\n",count);
}
return 0;
}
方法二:动态规划
考虑到使用递归中,很多的子递归重复计算,这样不仅在时间开销特别大,这也是运算太慢的原因,比如算120的时候需要3秒中,计算130的时候需要27秒钟,在计算机200的时候....计算10分钟还没计算出来。。。鉴于此,可以使用动态规划的思想进行程序设计,原理如同上面一样,分成三种情况,只是使用一个数组来代替原有的递归,具体可以参看源码,源码中提供了两个版本 递归+记录版本和数组版本
2.1 递归加记录版本
此版本使用数组标记,如果之前计算过,则直接调用数组中内容,否则计算子递归,这样保证了每次计算一次,减少冗余量
源码如下:
/*----------------------------------------------
* Author :NEWPLAN
* Date :2015-04-01
* Email :xxxxxxx
* Copyright:NEWPLAN
-----------------------------------------------*/
#include <iostream>
#define MAXNUM 100 //最高次数
unsigned long ww[MAXNUM*11][MAXNUM*11];
unsigned long dynamic_GetPartitionCount(int n, int max);
using namespace std;
int main(int argc, char **argv)
{
int n;
int m;
unsigned long count;
while(1)
{
cin>>n;
cout<<dynamic_GetPartitionCount(n,n)<<endl;
}
return 0;
}
unsigned long dynamic_GetPartitionCount(int n, int max)
{
if(n == 1 || max == 1)
{
ww[n][max]=1;
return 1;
}
if(n < max)
{
ww[n][n]=ww[n][n]? ww[n][n] : dynamic_GetPartitionCount(n, n);
return ww[n][n];
}
if(n == max)
{
ww[n][max]=ww[n][n-1]?1+ww[n][n-1]:1 + dynamic_GetPartitionCount(n, n - 1);
return ww[n][max];
}
else
{
ww[n][max]=ww[n - max][max]? (ww[n - max][max]) : dynamic_GetPartitionCount(n - max, max);
ww[n][max]+=ww[n][max-1]? (ww[n][max-1]): dynamic_GetPartitionCount(n, max - 1);
return ww[n][max];
}
}
2.2 数组标记法动态规划(从小到大)
考虑到计算ww[10][10]=ww[10][9]+1;所以在每次计算中都是用到之前的记录,这样就可以先从小到大计算出程序,使得计算较大数的时候调用已经计算出的较小的记录,程序直接是用循环就可以完成任务,避免了重复计算和空间栈的开销。
源码:
/*----------------------------------------------
* Author :NEWPLAN
* Date :2015-04-01
* Email :xxxxxxx
* Copyright:NEWPLAN
-----------------------------------------------*/
#include <iostream>
#define MAXNUM 100 //最高次数
unsigned long ww[MAXNUM*11][MAXNUM*11];
unsigned long dynamic_GetPartitionCount(int n, int max);
using namespace std;
int main(int argc, char **argv)
{
int n;
int m;
unsigned long count;
while(1)
{
cin>>n;
cout<<dynamic_GetPartitionCount(n,n)<<endl;
}
return 0;
}
unsigned long dynamic_GetPartitionCount(int n, int max)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
{
if(j==1|| i==1)
{
ww[i][j]=1;
}
else
{
if(j==i)
ww[i][j]=ww[i][j-1]+1;
else if((i-j)<j)
ww[i][j]=ww[i-j][i-j]+ww[i][j-1];
else
ww[i][j]=ww[i-j][j]+ww[i][j-1];
}
}
return ww[n][max];
}
三种方法效果对比十分明显,在写此博客之前测试数据200,动态规划版本输入直接算出结果,现在这片博客写完了,,,使用递归的还没计算出结果。。。
方法三:母函数
下面我们从另一个角度,即“母函数”的角度来考虑这个问题。
所谓母函数,即为关于x的一个多项式:
有
则我们称为序列的母函数。关于母函数的思路我们不做更过分析。
我们从整数划分考虑,假设的某个划分中,1的出现个数记为,2的个数记为,.....,i的个数记为,
显然有:
因此的划分数,也就是从1到这个数字抽取这样的组合,每个数字理论上可以无限重复出现,即个数随意,使它们的综合为。显然,数字可以有如下可能,出现0次(即不出现),1次,2次,......,次等等。把数字用表示,出现次的数字用表示,不出现用1表示。
例如,数字2用表示,2个2用表示,3个2用表示,k个2用表示。
则对于从1到N的所有可能组合结果我们可以表示为:
//展开式
上面的表达式中,每个括号内的多项式代表了数字i的参与到划分中的所有可能情况。因此,该多项式展开后,由于,因此x^i就代表了i的划分,展开后项的系数也就是i的所有划分个数,即。
由此我们找到了关于整数划分的母函数;剩下的问题就是,我们需要求出的展开后的所有系数。
为此,我们首先要做多项式乘法,对于我们来说,并不困难。我们把一个关于x的多项式用一个整数数组a[]表示,a[i]代表x^i的系数,即:
;
则关于多项式乘法的代码如下,其中数组a和数组b表示两个要相乘的多项式,结果存储到数组c中。
参考题目: HDU:1028:Ignatius and the Princess III
参考源码:
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
const int N=10005;
int c1[N],c2[N];
int main()
{
int n,i,j,k;
while(cin>>n)
{
if(n==0) break;
for(i=0;i<=n;i++)
{
c1[i]=1;
c2[i]=0;
}
for(i=2;i<=n;i++)
{
for(j=0;j<=n;j++)
for(k=0;k+j<=n;k+=i)
c2[k+j]+=c1[j];
for(j=0;j<=n;j++)
{
c1[j]=c2[j];
c2[j]=0;
}
}
cout<<c1[n]<<endl;
}
return 0;
}
方法四:五边形数定理
设第n个五边形数为,那么,即序列为:1, 5, 12, 22, 35, 51, 70, ...
对应图形如下:
设五边形数的生成函数为,那么有:
以上是五边形数的情况。下面是关于五边形数定理的内容:
五边形数定理是一个由欧拉发现的数学定理,描述欧拉函数展开式的特性。欧拉函数的展开式如下:
欧拉函数展开后,有些次方项被消去,只留下次方项为1, 2, 5, 7, 12, ...的项次,留下来的次方恰为广义五边形数。
五边形数和分割函数的关系
欧拉函数的倒数是分割函数的母函数,亦即:
其中为k的分割函数。
上式配合五边形数定理,有:
在 n>0 时,等式右侧的系数均为0,比较等式二侧的系数,可得
因此可得到分割函数p(n)的递归式:
例如n=10时,有:
所以,通过上面递归式,我们可以很快速地计算n的整数划分方案数p(n)了。
参考例题:
源码:
#include <iostream>
using namespace std;
#define MYDATA long long
const MYDATA MOD=1000000007;
#define AMS 100005
MYDATA pp[AMS];
MYDATA asist[2*AMS];
void myinit()
{
for(int i=0;i<AMS;i++)
{
/*算出五角数(正常五角数为1,5,12,22.... k*(3*k-1)/2)*/
/*此部分,需要算出的是分割函数(1,2,5,7,12,15,22,26.....
[k*(3*k-1)/2,k*(3*k+1)/2 ])*/
asist[2*i]=i*(i*3-1)/2;
asist[2*i+1]=i*(i*3+1)/2;
}
}
void mymethod()
{
pp[1]=1;
pp[2]=2;
pp[0]=1;
for(int i=3;i<AMS;i++)
{
int k=0;
int flags;
pp[i]=0;
/*pp[n]=pp[n-1]+pp[n-2]-pp[n-5]-pp[n-7]+pp[12]+pp[15]
-.... ..... [+pp[n-k*[3k-1]/2] + pp[n-k*[3k+1]/2]]*/
for(int j=2;asist[j]<=i;j++)
{
/*说明:式子中+MOD是必须的,否则输出可能出错(有可能为负数)*/
flags=k&2;
if(!flags)
pp[i]=(pp[i]+pp[i-asist[j]]+MOD)%MOD;
else
pp[i]=(pp[i]-pp[i-asist[j]]+MOD)%MOD;
k++;
k%=8;
}
}
}
int main()
{
int t,n;
myinit();
mymethod();
cin>>t;
while(t--)
{
cin>>n;
cout<<pp[n]<<endl;
}
return 0;
}
附加:
给定一个整数n,输出这个整数拆分的可能形式(即输出全部情况)
使用递归情况
整个输出类似于一颗树,以分解6为例,过程如下图
源码实现:
#include <stdio.h>
//使用一个数组记录在递归过程中产生的前面需要重复输出的值
int set[100];
//用于在递归过程中判断是否递归到最深处,输出回车
int k;
//此函数表示使用不大于m的整数对n进行拆分的情况,i用于表示set数组已经存在的记录数长度
void q(int n,int m,int i)
{
if(n==k&&n!=m)
{
//此时递归栈已经退回到某一分支的最上层,输出回车
//并重置计数器i为0
printf("\n");
i=0;
}
if(n==1)
{
//当n为1,意味者着只能表示1
printf("1 ");
return;
}
else if(m==1)
{
//当m为1,意味着要输出n个m相加
for(int i=0; i<n-1; i++)
printf("1+");
printf("1 ");
return;
}
if(n<m)
{
q(n,n,i);
}
if(n==m)
{
//当n等于m时,到达本次递归求和的一个叶子,此时需要输出多一个空格,表示下一次输出为另一个叶子
printf("%d ",n);
//在递归输出另一个叶子之前,将之前记录的在叶子之上的数一并输出,如上图示过程1
for(int j=0; j<i; j++)
printf("%d+",set[j]);
q(n,m-1,i);
}
if(n>m)
{
//如果n大于m,使用m作为分解,则要首先输出m+的形式
printf("%d+",m);
//记录下作为树干节点m的值并使i自增
set[i++]=m;
//递归输出m+以后的分解
q(n-m,m,i);
//递归完毕后需要将数组记录后退一个,回到上一个节点,如上图示过程2
i--;
//执行另一个分支,在下一次递归之前输出记录的数据,如上图示过程3
for(int j=0; j<i; j++)
printf("%d+",set[j]);
//递归输出另一分支情况
q(n,m-1,i);
}
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
if(n<=0)
{
printf("Please input a positive interger.\n\n");
continue;
}
k=n;
q(n,n,0);
printf("\n\n");
}
return 0;
}