Maximal Rectangle

原文地址:http://blog.csdn.net/littlestream9527/article/details/19641013

方法二的参考地址:http://hi.baidu.com/mzry1992/item/030f9740e0475ef7dc0f6cba

隔了一个月又回来了。这题之前做过,思路就是根据上一题中求直方图中的最大矩形面积来求全部包含1的最大矩形面积,就是多加了两层循环。

  1. int largestRectangleArea3(vector<int> &height) {  
  2.     stack<int> s;  
  3.     int len=height.size(),maxx=0;  
  4.     for(int i=0;i<len;++i)  
  5.     {  
  6.         if(s.empty())s.push(i);  
  7.         else  
  8.         {  
  9.             while(!s.empty()&&height[s.top()]>height[i])  
  10.             {  
  11.                 int ph=s.top();  
  12.                 s.pop();  
  13.                 if(!s.empty())  
  14.                     maxx=max(maxx,(i-s.top()-1)*height[ph]);  
  15.                 else   
  16.                     maxx=max(maxx,i*height[ph]);                      
  17.             }    
  18.             s.push(i);  
  19.         }  
  20.     }  
  21.     while(!s.empty())  
  22.     {  
  23.         int ph=s.top();  
  24.         s.pop();  
  25.         if(!s.empty())  
  26.             maxx=max(maxx,(len-s.top()-1)*height[ph]);  
  27.         else   
  28.             maxx=max(maxx,len*height[ph]);    
  29.   
  30.     }  
  31.     return maxx;  
  32. }  
  33.   
  34. int maximalRectangle(vector<vector<char> > &matrix) {  
  35.     if (matrix.empty()) {  
  36.         return 0;  
  37.     }  
  38.     int lenRow = matrix.size();  
  39.     if(lenRow==0)  
  40.         return 0;  
  41.     int lenColumn = matrix[0].size();  
  42.     vector<int> pcolumn;  
  43.     for (int i=0;i<lenColumn;i++)  
  44.         pcolumn.push_back(0);  
  45.     int tempmax = 0,maxx = 0;  
  46.     for (int i=0;i<lenRow;i++)  
  47.     {  
  48.         for (int k=0;k<lenColumn;k++)  
  49.         {  
  50.             pcolumn[k] = 0;  
  51.             for (int j=i;j>=0&&matrix[j][k]=='1';j--)  
  52.             {  
  53.                 pcolumn[k]++;  
  54.             }  
  55.         }  
  56.         tempmax = largestRectangleArea3(pcolumn);  
  57.         if(tempmax>maxx)  
  58.             maxx = tempmax;  
  59.     }  
  60.     return maxx;  
  61. }  
  62. //  
  63. int _tmain(int argc, _TCHAR* argv[])  
  64. {  
  65.     vector<vector<char> >matrix;  
  66.     vector<char> height;  
  67.     height.push_back('0');    
  68.     height.push_back('0');    
  69.     height.push_back('0');    
  70.     height.push_back('0');    
  71.     height.push_back('0');     
  72.     matrix.push_back(height);  
  73.     height.clear();  
  74.     height.push_back('0');    
  75.     height.push_back('1');    
  76.     height.push_back('0');    
  77.     height.push_back('1');    
  78.     height.push_back('0');     
  79.     matrix.push_back(height);  
  80.     height.clear();  
  81.     height.push_back('0');    
  82.     height.push_back('0');    
  83.     height.push_back('0');    
  84.     height.push_back('0');    
  85.     height.push_back('0');     
  86.     matrix.push_back(height);  
  87.     height.clear();  
  88.     height.push_back('0');    
  89.     height.push_back('1');    
  90.     height.push_back('1');    
  91.     height.push_back('0');    
  92.     height.push_back('0');     
  93.     matrix.push_back(height);  
  94.     height.clear();  
  95.     height.push_back('0');    
  96.     height.push_back('1');    
  97.     height.push_back('0');    
  98.     height.push_back('0');    
  99.     height.push_back('0');     
  100.     matrix.push_back(height);  
  101.     height.clear();  
  102.     cout<<maximalRectangle(matrix)<<endl;  
  103.     system("pause");  
  104.     return 0;  
  105. }  
这题还远不止这么多,下面的方法才叫牛逼呢。http://discuss.leetcode.com/questions/260/maximal-rectangle   http://hi.baidu.com/mzry1992/item/030f9740e0475ef7dc0f6cba 

  1. int maximalRectangle01(vector<vector<char> > &matrix) {  
  2.     if (matrix.empty()) {  
  3.         return 0;  
  4.     }  
  5.   
  6.     int n = matrix[0].size();  
  7.     vector<int> H(n);  
  8.     vector<int> L(n);  
  9.     vector<int> R(n, n);  
  10.   
  11.     int ret = 0;  
  12.     for (int i = 0; i < matrix.size(); ++i) {  
  13.         int left = 0, right = n;  
  14.         // calculate L(i, j) from left to right  
  15.         for (int j = 0; j < n; ++j) {  
  16.             if (matrix[i][j] == '1') {  
  17.                 ++H[j];  
  18.                 L[j] = max(L[j], left);  
  19.             }  
  20.             else {  
  21.                 left = j+1;  
  22.                 H[j] = 0; L[j] = 0; R[j] = n;  
  23.             }  
  24.         }  
  25.         // calculate R(i, j) from right to right  
  26.         for (int j = n-1; j >= 0; --j) {  
  27.             if (matrix[i][j] == '1') {  
  28.                 R[j] = min(R[j], right);  
  29.                 ret = max(ret, H[j]*(R[j]-L[j]));  
  30.             }  
  31.             else {  
  32.                 right = j;  
  33.             }  
  34.         }  
  35.     }  
  36.   
  37.     return ret;  
  38. }  

自己试着写了这种方法的程序,写出来了,是错的,对于下面的测试用例不好使。这题太难理解了。。。也说不明白。。。

把上面的程序用测试用例1011,0101,1110调试了几次,就是想看懂程序:当matrix【row】【i】不为零时,假设L[i]=kl,R[i]=kr,H[i]=kh,说明要构成的最大矩形(全为1)高为kh,左边界位置为kl,右边界位置为kr。最关键的是L[i]的求法利用了left变量递推,每次遇到当前值为0就更新left,也就更新了之后的L[i]。R[i]和right是同理的。这题更微妙的是当前值为0时H[i]为0是必须的,因为当对应的下个位置为1会加一。这题L[i]=max(L[i],left);也就是说当left>L[i]时更新L[i],否则当前值得L[i]就是上一行的L[i]。

真没理解透,跑程序知道是正确的,但不知道为什么这样是正确的。。。。。。。。。。。。

再回首:left的作用就是记录当前行的左起第一个为1的位置,上一行的存在L[i]里,所以L[i]=max(L[i],left)才正确,说的就是当此行的left变大了,那么此行的L[i]也应该变大,此行的L[i]对应的高度是此行的H[i](即H[i]已经加一了,因为当前的元素肯定不为0)。


springboot100基于Springboot+Vue精准扶贫管理系统-毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值