【bzoj1005】 明明的烦恼——树的prufer编码

    就用这道题来学一下prufer编码吧。

    树的prufer编码可以唯一确定树的形状,即一棵树只有一个prufer编码,一个prufer编码只对应一棵树。

    一棵n个节点的树的prufer编码长度为n-2,确定方法如下:

 (1)树的prufer编码的实现
        不断 删除树中度数为1的最小序号的点,并输出与其相连的节点的序号  直至树中只有两个节点
  (2)通过观察我们可以发现
        任意一棵n节点的树都可唯一的用长度为n-2的prufer编码表示
        度数为m的节点的序号在prufer编码中出现的次数为m-1
  (3)怎样将prufer编码还原为一棵树??
        从prufer编码的最前端开始扫描节点,设该节点序号为 u ,寻找不在prufer编码的最小序号且没有被标记的节点 v ,连接   u,v,并标记v,将u从prufer编码中删除。扫描下一节点。
——摘自hzwer

    这道题根据每个点的度数-1,我们就确定了这个点在prufer编码里出现的次数。

    设度数有限制的点数为cnt,将所有有限制的点的度数-1的和记作sum。

    那么答案就为C(sum,n-2)*sum!/(d[i]-1)!*(n-cnt)^(n-2-sum)

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define mod 1000000

using namespace std;

int n,cnt,tot,m,len;
int ans[1010],d[1010],num[1010],pri[1010];

bool check(int x)
{
	for (int i=2;i*i<=x;i++)
	  if (x%i==0) return 0;
	return 1;
}

void solve(int x,int f)
{
	for (int i=2;i<=x;i++)
	{
		int k=i;
		for (int j=1;j<=cnt;j++)
		{
		  if (k<=1) break;
		  while (k%pri[j]==0) num[j]+=f,k/=pri[j];
		}
	}
}

void mul(int x)
{
	for (int i=1;i<=len;i++) ans[i]*=x;
	for (int i=1;i<=len;i++)
	{
		ans[i+1]+=ans[i]/mod;
		ans[i]%=mod;
	}
	while (ans[len+1]>0)
	{
		len++;ans[len+1]+=ans[len]/mod;ans[len]%=mod;
	}
}

int main()
{
	for (int i=2;i<=1000;i++)
	  if (check(i)) pri[++cnt]=i;
	scanf("%d",&n);
	if (n==1)
	{
		int x;
		scanf("%d",&x);
		if (!x) printf("1");
		else printf("0");
		return 0;
	}
	for (int i=1;i<=n;i++)
	{
		scanf("%d",&d[i]);
		if (!d[i]) {printf("0");return 0;}
		if (d[i]==-1) m++;
		else {d[i]--;tot+=d[i];}
	}
	if (tot>n-2) {printf("0");return 0;}
	ans[1]=1;len=1;
	solve(n-2,1);
	solve(n-2-tot,-1);
	for (int i=1;i<=n;i++)
	  if (d[i]>0) solve(d[i],-1);
	for (int i=1;i<=n-tot-2;i++)
	  mul(m);
	for (int i=1;i<=cnt;i++)
	  while (num[i]) mul(pri[i]),num[i]--;
	printf("%d",ans[len]);
	for (int i=len-1;i>=1;i--) printf("%06d",ans[i]);printf("\n");
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值