关闭

【bzoj1005】 明明的烦恼——树的prufer编码

537人阅读 评论(0) 收藏 举报
分类:

    就用这道题来学一下prufer编码吧。

    树的prufer编码可以唯一确定树的形状,即一棵树只有一个prufer编码,一个prufer编码只对应一棵树。

    一棵n个节点的树的prufer编码长度为n-2,确定方法如下:

 (1)树的prufer编码的实现
        不断 删除树中度数为1的最小序号的点,并输出与其相连的节点的序号  直至树中只有两个节点
  (2)通过观察我们可以发现
        任意一棵n节点的树都可唯一的用长度为n-2的prufer编码表示
        度数为m的节点的序号在prufer编码中出现的次数为m-1
  (3)怎样将prufer编码还原为一棵树??
        从prufer编码的最前端开始扫描节点,设该节点序号为 u ,寻找不在prufer编码的最小序号且没有被标记的节点 v ,连接   u,v,并标记v,将u从prufer编码中删除。扫描下一节点。
——摘自hzwer

    这道题根据每个点的度数-1,我们就确定了这个点在prufer编码里出现的次数。

    设度数有限制的点数为cnt,将所有有限制的点的度数-1的和记作sum。

    那么答案就为C(sum,n-2)*sum!/(d[i]-1)!*(n-cnt)^(n-2-sum)

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define mod 1000000

using namespace std;

int n,cnt,tot,m,len;
int ans[1010],d[1010],num[1010],pri[1010];

bool check(int x)
{
	for (int i=2;i*i<=x;i++)
	  if (x%i==0) return 0;
	return 1;
}

void solve(int x,int f)
{
	for (int i=2;i<=x;i++)
	{
		int k=i;
		for (int j=1;j<=cnt;j++)
		{
		  if (k<=1) break;
		  while (k%pri[j]==0) num[j]+=f,k/=pri[j];
		}
	}
}

void mul(int x)
{
	for (int i=1;i<=len;i++) ans[i]*=x;
	for (int i=1;i<=len;i++)
	{
		ans[i+1]+=ans[i]/mod;
		ans[i]%=mod;
	}
	while (ans[len+1]>0)
	{
		len++;ans[len+1]+=ans[len]/mod;ans[len]%=mod;
	}
}

int main()
{
	for (int i=2;i<=1000;i++)
	  if (check(i)) pri[++cnt]=i;
	scanf("%d",&n);
	if (n==1)
	{
		int x;
		scanf("%d",&x);
		if (!x) printf("1");
		else printf("0");
		return 0;
	}
	for (int i=1;i<=n;i++)
	{
		scanf("%d",&d[i]);
		if (!d[i]) {printf("0");return 0;}
		if (d[i]==-1) m++;
		else {d[i]--;tot+=d[i];}
	}
	if (tot>n-2) {printf("0");return 0;}
	ans[1]=1;len=1;
	solve(n-2,1);
	solve(n-2-tot,-1);
	for (int i=1;i<=n;i++)
	  if (d[i]>0) solve(d[i],-1);
	for (int i=1;i<=n-tot-2;i++)
	  mul(m);
	for (int i=1;i<=cnt;i++)
	  while (num[i]) mul(pri[i]),num[i]--;
	printf("%d",ans[len]);
	for (int i=len-1;i>=1;i--) printf("%06d",ans[i]);printf("\n");
	return 0;
}


0
0
查看评论

【树】【数论】[BZOJ1005][HNOI2008]明明的烦恼

题目描述自从明明学了树的结构,就对奇怪的树产生了兴趣…… 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?样例输入3 1 -1 -1样例输出2题目解析首先我们根据prufer数列可以知道任意一棵无根树可以表示为任意一个长度为n−2n-2的串并且有...
  • JeremyGJY
  • JeremyGJY
  • 2016-02-02 18:05
  • 910

HYSBZ/BZOJ 1005 [HNOI2008] 明明的烦恼 - Prufer编码&组合数学&高精度 此乃神题!

题目描述分析&Solution: hzw大神的blog JMJST大神的blog Matrix67对Prufer编码的理解 再结合题解,才终于理解怎么回事,大赞hzw大神的blog。#include<cstdio> #include<algorithm> #inclu...
  • yuanxinyu402
  • yuanxinyu402
  • 2016-02-02 20:56
  • 405

[BZOJ1005][HNOI2008]明明的烦恼(prufer序列+组合数学+高精度)

一个人至少拥有一个梦想,有一个理由去坚强。
  • Clove_unique
  • Clove_unique
  • 2016-05-22 08:44
  • 783

bzoj 1005 [HNOI2008] 明明的烦恼 题解

转载请注明出处: 【原题】 1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 1963  Solved: 768 [Submi...
  • u013724185
  • u013724185
  • 2014-03-31 10:46
  • 2353

树的Prufer 编码和最小生成树计数

1. 一棵标号树的Pufer编码规则如下:找到标号最小的叶子节点,输出与它相邻的节点到prufer 序列, 将该叶子节点删去,反复操作,直至剩余2个节点。2. 由Pufer编码生成树:任何一个prufer 序列可以唯一对应到一棵有标号的树,首先标记所有节点为未删除 依次扫描prufer 序列中的数,...
  • bingshangjiguang
  • bingshangjiguang
  • 2010-11-17 23:23
  • 4948

bzoj1005: [HNOI2008]明明的烦恼 [prufer序列]

显然这道题我不是自己想出来的,如果不知道prufer序列根本想不出来。。大概还是我弱。
  • baidu_20126217
  • baidu_20126217
  • 2014-09-25 22:59
  • 320

[prufer序列]BZOJ1005: [HNOI2008]明明的烦恼

BZOJ1005
  • u013591931
  • u013591931
  • 2014-03-15 15:39
  • 915

[Prufer数列] BZOJ1005: [HNOI2008]明明的烦恼

题意给出n个节点的度数di,允许在任意两点间连线,可产生多少棵度数满足要求的树?若对度数不要求,则di=-1。 n<=1005;题解这道题需要知道Prufer数列的知识。 prufer数列是无根树的一种数列,数列与树两两对应。也就是说一种树只有唯一的一种数列来表示它。反过来给你一个数列,你...
  • CHHNZ
  • CHHNZ
  • 2017-02-19 23:19
  • 238

[bzoj1005][prufer][HNOI2008]明明的烦恼

1005: [HNOI2008]明明的烦恼Time Limit: 1 Sec Memory Limit: 162 MB Submit: 5350 Solved: 2096 [Submit][Status][Discuss] Description  自从明明学了树的结构,就对奇怪的树产生了...
  • qq_36993218
  • qq_36993218
  • 2017-08-14 21:22
  • 63

[BZOJ1005]HNOI2008 明明的烦恼|prufer编码|排列组合

太可怕了,HN怎这么喜欢数学题,这几天被数学题虐成狗。。这题有一个什么prufer编码的东西,就是一棵树和一个prufer编码是唯一对应的,也就是把树的可能方案转化成一个数列的转化方案来做,然后就排列组合乱搞了,但是直接搞要写高精除,会死掉的。。显然方案数一定是整数,那么做一下质因数分解就OK了。。
  • Tag_king
  • Tag_king
  • 2015-04-17 09:24
  • 251
    个人资料
    • 访问:191891次
    • 积分:4912
    • 等级:
    • 排名:第6861名
    • 原创:305篇
    • 转载:0篇
    • 译文:0篇
    • 评论:72条
    最新评论