关闭

【bzoj1005】 明明的烦恼——树的prufer编码

378人阅读 评论(0) 收藏 举报
分类:

    就用这道题来学一下prufer编码吧。

    树的prufer编码可以唯一确定树的形状,即一棵树只有一个prufer编码,一个prufer编码只对应一棵树。

    一棵n个节点的树的prufer编码长度为n-2,确定方法如下:

 (1)树的prufer编码的实现
        不断 删除树中度数为1的最小序号的点,并输出与其相连的节点的序号  直至树中只有两个节点
  (2)通过观察我们可以发现
        任意一棵n节点的树都可唯一的用长度为n-2的prufer编码表示
        度数为m的节点的序号在prufer编码中出现的次数为m-1
  (3)怎样将prufer编码还原为一棵树??
        从prufer编码的最前端开始扫描节点,设该节点序号为 u ,寻找不在prufer编码的最小序号且没有被标记的节点 v ,连接   u,v,并标记v,将u从prufer编码中删除。扫描下一节点。
——摘自hzwer

    这道题根据每个点的度数-1,我们就确定了这个点在prufer编码里出现的次数。

    设度数有限制的点数为cnt,将所有有限制的点的度数-1的和记作sum。

    那么答案就为C(sum,n-2)*sum!/(d[i]-1)!*(n-cnt)^(n-2-sum)

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define mod 1000000

using namespace std;

int n,cnt,tot,m,len;
int ans[1010],d[1010],num[1010],pri[1010];

bool check(int x)
{
	for (int i=2;i*i<=x;i++)
	  if (x%i==0) return 0;
	return 1;
}

void solve(int x,int f)
{
	for (int i=2;i<=x;i++)
	{
		int k=i;
		for (int j=1;j<=cnt;j++)
		{
		  if (k<=1) break;
		  while (k%pri[j]==0) num[j]+=f,k/=pri[j];
		}
	}
}

void mul(int x)
{
	for (int i=1;i<=len;i++) ans[i]*=x;
	for (int i=1;i<=len;i++)
	{
		ans[i+1]+=ans[i]/mod;
		ans[i]%=mod;
	}
	while (ans[len+1]>0)
	{
		len++;ans[len+1]+=ans[len]/mod;ans[len]%=mod;
	}
}

int main()
{
	for (int i=2;i<=1000;i++)
	  if (check(i)) pri[++cnt]=i;
	scanf("%d",&n);
	if (n==1)
	{
		int x;
		scanf("%d",&x);
		if (!x) printf("1");
		else printf("0");
		return 0;
	}
	for (int i=1;i<=n;i++)
	{
		scanf("%d",&d[i]);
		if (!d[i]) {printf("0");return 0;}
		if (d[i]==-1) m++;
		else {d[i]--;tot+=d[i];}
	}
	if (tot>n-2) {printf("0");return 0;}
	ans[1]=1;len=1;
	solve(n-2,1);
	solve(n-2-tot,-1);
	for (int i=1;i<=n;i++)
	  if (d[i]>0) solve(d[i],-1);
	for (int i=1;i<=n-tot-2;i++)
	  mul(m);
	for (int i=1;i<=cnt;i++)
	  while (num[i]) mul(pri[i]),num[i]--;
	printf("%d",ans[len]);
	for (int i=len-1;i>=1;i--) printf("%06d",ans[i]);printf("\n");
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:147173次
    • 积分:4422
    • 等级:
    • 排名:第7034名
    • 原创:302篇
    • 转载:0篇
    • 译文:0篇
    • 评论:69条
    最新评论