【bzoj1068】[SCOI2007]压缩 区间dp

比较有意思的题目就拿来写一写

很明显的区间dp模型,状态很好设计,但是转移的时候有一些小注意

因为一开始我们可以看做左端点有一个M

f[l][r][0/1]表示区间[l,r]中间是否加入了M,默认在L-1处有一个M时的最小长度

f[l][r][0]=min{f[l][k][0]+r-k} 注意,这里不能是f[k+1][r][0],因为这样默认了在k和k+1之间加入了一个M

f[l][r][0]=f[l][mid][0]+1 当s[mid+1,r]==s[l,mid]时,(mid=(l+r)/2)

f[l][r][1]=min{min(f[l][k][0],f[l][k][1])+1+min(f[k+1][r][0],f[k+1][r][1])} 当中间加入了M,枚举M放在哪里就可以


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>

using namespace std;

int f[110][110][2];
char s[110];
int n;

bool check(int l,int r)
{
	int mid=(l+r)/2;
	for (int i=1;i<=mid-l+1;i++) if (s[l+i-1]!=s[mid+i]) return 0;
	return 1;
}

int main()
{
	scanf("%s",s+1);
	n=strlen(s+1);
	for (int i=n;i>=1;i--)
	    for (int j=i;j<=n;j++)
	    {
	    	f[i][j][0]=f[i][j][1]=j-i+1;
	    	for (int k=i;k<j;k++)  f[i][j][1]=min(f[i][j][1],min(f[i][k][0],f[i][k][1])+1+min(f[k+1][j][0],f[k+1][j][1]));
	    	for (int k=i;k<j;k++)  f[i][j][0]=min(f[i][j][0],f[i][k][0]+j-k);
	    	if ((j-i+1)%2==0 && check(i,j)) f[i][j][0]=f[i][(i+j)/2][0]+1;
	    	if (j-i+1==1) f[i][j][1]=n+1;
	    }
	printf("%d\n",min(f[1][n][0],f[1][n][1]));
	return 0;
}


发布了307 篇原创文章 · 获赞 61 · 访问量 26万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览