《Convex Optimization》附录A数学背景

附录A  数学背景

1. 范数

1.1 内积与夹角

n维向量内积:<\mathbf{x},\mathbf{y}> = \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^{n} \mathbf{x}_i \mathbf{y}_i   

m×n维矩阵内积:<\mathbf{A}, \mathbf{B}> = \textbf{tr}(\mathbf{A}^{\top} \mathbf{B}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} \mathbf{B}_{ij}

向量(矩阵)夹角: \angle (\mathbf{x}, \mathbf{y}) = \cos^{-1}(\frac{<\mathbf{x}, \mathbf{y}>}{\left \|\mathbf{x} \right \|_2 \left \| \mathbf{y} \right \|_2})

Cauchy-Schwartz inequality:\left | <\mathbf{x}, \mathbf{y}> \right | \leqslant \left \| \mathbf{x} \right \|_2 \left \| \mathbf{y} \right \|_2,等号成立当且仅当向量x和y共线

 

1.2  常见范式(A.1.3)

向量范数

Lp-范数:\left \| \mathbf{x} \right \|_p=(\left | \mathbf{x}_1 \right |^p + \cdots + \left | \mathbf{x}_n \right |^p)^{1/p}

p=1、2、∞时比较常用

L1-范数(绝对值和范数):\left \| \mathbf{x} \right \|_1=\left | \mathbf{x}_1 \right | + \cdots + \left | \mathbf{x}_n \right |

L2-范数(Euclidean范数):\left \| \mathbf{x} \right \|_2=(\left | \mathbf{x}_1 \right |^2 + \cdots + \left | \mathbf{x}_n \right |^2)^{1/2}

L∞-范数(Chebyshev范数):\lim_{p \to +\infty}\left \| \mathbf{x} \right \|_p=\lim_{p \to +\infty} (\left | \mathbf{x}_1 \right |^p + \cdots + \left | \mathbf{x}_n \right |^p)^{1/p} = \max\{\left | \mathbf{x}_1 \right | , \cdots , \left | \mathbf{x}_n \right |\}

最后一个极限是数学分析的知识,可用夹逼法证明。

P-二次型范数:若P为正定矩阵,则\left \| \mathbf{x} \right \|_\mathbf{P}=(\mathbf{x}^{\top} \mathbf{P} \mathbf{x})^{1/2} = \left \| \mathbf{P}^{1/2} \mathbf{x} \right \|_2

这是十分常用的范数,可以方便的表示很多量,椭圆也可以用它简洁的表示。

 

矩阵范数

绝对值和(sum-absolute-value)范数:\left \| \mathbf{X} \right \|_{sav}=\sum_{i=1}^{m} \sum_{j=1}^{n} \left | \mathbf{X}_{ij} \right |

Frobenius范数:\left \| \mathbf{X} \right \|_{F}=(\textbf{tr}(\mathbf{X}^{\top} \mathbf{X}))^{1/2}=(\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{X}_{ij}^2 )^{1/2}

绝对值最大(maximum-absolute-value)范数:\left \| \mathbf{X} \right \|_{mav}=\lim_{p \to +\infty}(\sum_{i=1}^{m} \sum_{j=1}^{n} \left | \mathbf{X}_{ij} \right |^p )^{1/p} =\max \{ \left | \mathbf{X_{ij}} \right | | i = 1, \cdots, m, j = 1, \cdots, n \}

与向量范数相似,对应为p取1、2、∞的情况。

 

算子范数(A.1.5)

定义:在范数a \left \| \cdot \right \|_a 和范数b \left \| \cdot \right \|_b意义下,矩阵\mathbf{X} \in \mathbb{R}^{m \times n}的算子范数为

\left \| \mathbf{X} \right \|_{a,b} = sup \{ \left \| \mathbf{X} \mathbf{u} \right \|_a | \left \| \mathbf{u} \right \|_b \leq 1 \}

这种较为一般的定义往往是不常用的,这里举了几个最常用的例子,仍分别对应1、2、∞三种情况。

当a=b=1时,

最大列和(max-column-sum)范数:\left \| \mathbf{X} \right \|_1 = \max_{j=1, \cdots, n} \sum_{i=1}^{m} \left | \mathbf{X}_{ij} \right |

推导:记第j列列和最大,则令\mathbf{u}_j为1,其余为0,易得此时取得最大值

当a=b=2时,

谱(spectral)范数:\left \| \mathbf{X} \right \|_2 = \sigma_{\max}(\mathbf{X}) = (\lambda_{\max}(\mathbf{X}^{\top} \mathbf{X}))^{1/2}

推导:\left \| \mathbf{X} \mathbf{u} \right \|_2^2 = \mathbf{u}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{u} \leq \lambda_{\max}(\mathbf{X}^{\top} \mathbf{X}) \mathbf{u}^{\top}\mathbf{u}=\lambda_{\max}(\mathbf{X}^{\top} \mathbf{X}),等号成立当且仅当

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值