八周 项目3 分数类中的运算符重载

/*
* 程序的版权和版本声明部分:
* Copyright (c) 2013, 烟台大学计算机学院
* All rights reserved.
* 文件名称:test.cpp
* 作    者:赵加响
* 完成日期:2014年 4月 17日
* 程序输出:
* 问题分析:略
* 算法设计:略
*/
#include <iostream>
using namespace std;
class CFraction
{
private:
    int nume;  // 分子
    int deno;  // 分母
public:
    //构造函数及运算符重载的函数声明
    CFraction(int nu=0,int de=1);
    void setTime(int nu,int de);
    void display();
    void simplify();
    bool operator < (CFraction &c);
    bool operator > (CFraction &c);
    bool operator <= (CFraction &c);
    bool operator >= (CFraction &c);
    bool operator == (CFraction &c);
    bool operator != (CFraction &c);
    CFraction operator + (CFraction &c);
    CFraction operator - (CFraction &c);
    CFraction operator * (CFraction &c);
    CFraction operator / (CFraction &c);
};
//重载函数的实现及用于测试的main()函数
CFraction::CFraction(int nu,int de)
{
    nume=nu;
    deno=de;
}
void CFraction::display()
{
    cout<<nume<<"/"<<deno<<endl;
}
void CFraction::simplify()
{
    int d,n,r;
    d=deno;
    n=nume;
    while(r=d%n)
    {
        d=n;
        n=r;
    }
    deno/=n;
    nume/=n;
    if(deno<0)
    {
        deno=-deno;
        nume=-nume; //借鉴贺老师的
    }
}
bool CFraction::operator < (CFraction &c)
{
    while(deno==c.deno)
    {
    if(nume<c.nume)
    return true;
    else
    return false;
    }
    while(deno!=c.deno)
    {
        if(nume*c.deno<deno*c.nume)
        return true;
    else
    return false;
    }
}
bool CFraction::operator > (CFraction &c)
{
    while(deno==c.deno)
    {
    if(nume>c.nume)
    return true;
    else
    return false;
    }
    while(deno!=c.deno)
    {
        if(nume*c.deno>deno*c.nume)
        return true;
    else
    return false;
    }
}
bool CFraction::operator <= (CFraction &c)
{
    if(*this>c)return false;
    return true;
}
bool CFraction::operator >= (CFraction &c)
{
    if(*this<c)return false;
    return true;
}
bool CFraction::operator == (CFraction &c)
{
    if(*this<=c&&*this>=c)return true;
    return false;
}
bool CFraction::operator != (CFraction &c)
{
    if(*this==c)return false;
    return true;
}
CFraction CFraction::operator + (CFraction &c)
{
    int de,nu;
    if(deno==c.deno)
    {
        nu=nume+c.nume;
        de=deno;
    }
    else
    nu=nume*c.deno+deno*c.nume;
    de=deno*c.deno;
    CFraction c0(nu,de);
    c0.simplify();
    return c0;
}
CFraction CFraction::operator - (CFraction &c)
{
    int de,nu;
    if(deno==c.deno)
    {
        nu=nume-c.nume;
        de=deno;
    }
    else
    nu=nume*c.deno-deno*c.nume;
    de=deno*c.deno;
    CFraction c0(nu,de);
    c0.simplify();
    return c0;
}
CFraction CFraction::operator * (CFraction &c)
{
    int de,nu;
    de=deno*c.deno;
    nu=nume*c.nume;
    CFraction c0(nu,de);
    c0.simplify();
    return c0;
}
CFraction CFraction::operator / (CFraction &c)
{
    int de,nu;
    de=deno*c.nume;
    nu=nume*c.deno;
    CFraction c0(nu,de);
    c0.simplify();
    return c0;
}
int main()
{
    CFraction c1(3,8),c2(3,7),c3,c4,c5,c6;
    cout<<"c1=";
    c1.display();
    cout<<"c2=";
    c2.display();
    cout<<"c1,c2关系为:"<<endl;;
    if(c1<c2)cout<<"c1<c2"<<endl;
    if(c1>c2)cout<<"c1>c2"<<endl;
    if (c1==c2) cout<<"c1=c2"<<endl;
    if (c1!=c2) cout<<"c1≠c2"<<endl;
    if (c1>=c2) cout<<"c1≥c2"<<endl;
    if (c1<=c2) cout<<"c1≤c2"<<endl;
    cout<<endl;
    c3=c1+c2;
    cout<<"c1+c2=";
    c3.display();
    c4=c1-c2;
    cout<<"c1-c2=";
    c4.display();
    c5=c1*c2;
    cout<<"c1*c2=";
    c5.display();
    c6=c1/c2;
    cout<<"c1/c2=";
    c6.display();
}

感悟:终于靠自己的力量做出来了,尽管其中有老师的提示,但在这一篇中博文中,我流了很多汗水,和项目2不同的是,只有个别的几句是借鉴的。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值