(1)实现分数类中的运算符重载,在分数类中可以完成分数的加减乘除(运算后再化简)、比较(6种关系)的运算。可以在第4周分数类代码的基础上开始工作。
class CFraction
{
private:
int nume; // 分子
int deno; // 分母
public:
//构造函数及运算符重载的函数声明
};
//重载函数的实现及用于测试的main()函数
参考解答:
/* All rights reserved.
* 文件名称:test.cpp
* 作者:陈丹妮
* 完成日期:2015年 5 月 19 日
* 版 本 号:v1.0
*/
#include <iostream>
#include <cmath>
using namespace std;
class CFraction
{
private:
int nume; //分子
int deno; //分母
public:
CFraction(int nu=0,int de=1):nume(nu),deno(de) {}
void simplify();
void display();
CFraction operator+(const CFraction &c); //两个分数相加,结果要化简
CFraction operator-(const CFraction &c); //两个分数相减,结果要化简
CFraction operator*(const CFraction &c); //两个分数相乘,结果要化简
CFraction operator/(const CFraction &c); //两个分数相除,结果要化简
//判断两个分数的大小
bool operator>(const CFraction &c);
bool operator<(const CFraction &c);
bool operator==(const CFraction &c);
bool operator>=(const CFraction &c);
bool operator<=(const CFraction &c);
bool operator!=(const CFraction &c);
};
//分数化简
void CFraction::simplify()
{
int m,n,r;
n=fabs(nume); //分子
m=fabs(deno); //分母
while(n!=0) //while(r=m%n) 求m,n的最大公约数
{
//{ m=n;
r=m%n; // n=r;}
m=n; // deno/=n;
n=r; // nume/=n;
}
deno/=m; //化简分数
nume/=m;
if(deno<0) 将分母转化为正数
{
deno=-deno;
nume=-nume;
}
}
//显示分数
void CFraction::display()
{
cout<<"("<<nume<<"/"<<deno<<")"<<endl; //(分子/分母)的形式
}
//分数相加
CFraction CFraction::operator+(const CFraction &c)
{
CFraction t;
t.nume=nume*c.deno+ deno*c.nume;
t.deno=deno*c.deno;
t.simplify();
return t;
}
//分数相减
CFraction CFraction::operator-(const CFraction &c)
{
CFraction t;
t.nume=nume*c.deno- deno*c.nume;
t.deno=deno*c.deno;
t.simplify();
return t;
}
//分数相乘
CFraction CFraction::operator*(const CFraction &c)
{
CFraction t;
t.nume=nume*c.nume;
t.deno=deno*c.deno;
t.simplify();
return t;
}
//分数相除
CFraction CFraction::operator/(const CFraction &c)
{
CFraction t;
if (!c.nume) return *this; //除法无效时,这种情况需要考虑,但这种处理仍不算合理
t.nume=nume*c.deno;
t.deno=deno*c.nume;
t.simplify();
return t;
}
// 分数比较大小
bool CFraction::operator>(const CFraction &c)
{
int this_nume,c_nume,common_deno;
this_nume=nume*c.deno; // 计算分数通分后的分子,同分母为deno*c.deno
c_nume=c.nume*deno;
common_deno=deno*c.deno;
if ((this_nume>c_nume&&common_deno>0)||(this_nume<c_nume&&common_deno<0)) return true; // 将通分后的分子比较大小
return false;
}
// 分数比较大小
bool CFraction::operator<(const CFraction &c)
{
int this_nume,c_nume,common_deno;
this_nume=nume*c.deno; // 计算分数通分后的分子,同分母为deno*c.deno
c_nume=c.nume*deno;
common_deno=deno*c.deno;
if ((this_nume-c_nume)*common_deno<0) return true;
return false;
}
bool CFraction::operator==(const CFraction &c)
{
if (*this!=c) return false;
return true;
}
bool CFraction::operator!=(const CFraction &c)
{
if (*this>c || *this<c) return true;
return false;
}
bool CFraction::operator>=(const CFraction &c)
{
if (*this<c) return false;
return true;
}
bool CFraction::operator<=(const CFraction &c)
{
if (*this>c) return false;
return true;
}
int main()
{
CFraction x(1,3),y(-5,10),s;
cout<<"分数x=1/3 y=-5/10"<<endl;
s=x+y;
cout<<"x+y=";
s.display();
s=x-y;
cout<<"x-y=";
s.display();
s=x*y;
cout<<"x*y=";
s.display();
s=x/y;
cout<<"x/y=";
s.display();
x.display();
if (x>y) cout<<"大于"<<endl;
if (x<y) cout<<"小于"<<endl;
if (x==y) cout<<"等于"<<endl;
y.display();
cout<<endl;
return 0;
}
心得体会:加油加油,继续努力,赶上!!