关闭

[置顶] 计算机视觉、机器学习、模式识别、图像处理领域国内外期刊、会议汇总

国际期刊 一、IEEE Transactions on Pattern Analysis and Machine Intelligence   (PAMI)             (IEEE模式分析与机器智能汇刊)             链接:http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34...
阅读(2317) 评论(0)

生成模型与判别模型

监督学习方法又可以分成两种: 1)  生产方法(Generative Approach) 2)  判别方法(DiscriminativeApproach) 所学到的模型分别称为生成式模型(Generative Model)和判别式模型(Discriminative Model)。 监督学习的任务就是学习一个模型(分类器),应用这一模型,对给定的输入预测相应的输出。这个模型的形式有两种:...
阅读(45) 评论(0)

ILSVRC2016目标检测任务回顾(图像视频目标检测)

计算机视觉领域权威评测——ImageNet大规模图像识别挑战赛(Large Scale Visual Recognition Challenge)自2010年开始举办以来,一直备受关注。2016年,在该比赛的图像目标检测任务中,国内队伍大放异彩,包揽该任务前五名(如图1所示)。我们将根据前五名参赛队伍提交的摘要与公开发表的论文或技术文档,简析比赛中用到的图像目标检测方法。...
阅读(2378) 评论(0)

DPM(Deformable Parts Model)--原理

DPM是一个非常成功的目标检测算法,连续获得VOC(Visual Object Class)07,08,09年的检测冠军。目前已成为众多分类器、分割、人体姿态和行为分类的重要部分。2010年Pedro Felzenszwalb被VOC授予"终身成就奖"。DPM可以看做是HOG(Histogrrams of Oriented Gradients)的扩展,大体思路与HOG一致。先计算梯度方向直方图,然后用SVM(Surpport Vector Machine )训练得到物体的梯度模型(Model)。...
阅读(467) 评论(0)

Opencv机器学习之CvMLdata

1. .csv是最通用的一种文件格式,它可以非常容易地被导入各种PC表格及数据库中。此文件中,一行即为数据表的一个记录。.csv可以用记事本打开,打开后,数据之间以逗号为分隔符;.csv也可以用excel打开,显示格式与正常的excel表格数据一样,而且可以将excel文件转换为.csv文件。 2.  Opencv 提供了CvMLdata类(数据类型)来读取.csv文件并进行相...
阅读(522) 评论(0)

机器学习算法比较

机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。但是如果你只是在寻找一个“足够好”的...
阅读(463) 评论(0)

深度学习在计算机视觉领域的前沿进展

在今年的神经网络顶级会议NIPS2016上,深度学习三大牛之一的Yann Lecun教授给出了一个关于机器学习中的有监督学习、无监督学习和增强学习的一个有趣的比喻,他说:如果把智能(Intelligence)比作一个蛋糕,那么无监督学习就是蛋糕本体,增强学习是蛋糕上的樱桃,那么监督学习,仅仅能算作蛋糕上的糖霜...
阅读(2310) 评论(0)

机器学习之梯度下降、批量梯度下降与随机梯度下降

大多数的机器学习算法都涉及某种形式的优化。优化指的是改变以最小化或者最大化某个函数的任务。我们通常以最小化指代大多数优化问题。最大化可由最小化算法最小化来实现。 我们把要最小化或者最大化的函数称为目标函数或准则。当我们对其进行最小化时,我们也把它称为代价函数、损失函数或者误差函数。 转自:http://blog.csdn.net/wuyanyi/article/details/8003946...
阅读(1571) 评论(1)

图像处理之Haar特征

Haar-like特征是计算机视觉领域一种常用的特征描述算子(也称为Haar特征,这是因为Haar-like是受到一维haar小波的启示而发明的,所以称为类Haar特征),后来又将Haar-like扩展到三维空间(称为3DHaar-Like)用来描述视频中的动态特征。关于Haar的发展历程如图1所示。 图1 Haar-like特征的特点        目前最常用的还是Haar...
阅读(741) 评论(0)

Opencv目标检测之级联分类器训练与测试

OpenCV提供了两个程序可以训练自己的级器opencv_haartraining 与opencv_traincascade。opencv_traincascade是一个新程序,使用OpenCV 2.x API 以C++ 编写。这二者主要的区别是opencv_traincascade支持 Haar和 LBP (Local Binary Patterns)两种特征,并易于增加其他的特征。与...
阅读(3362) 评论(0)

图像的仿射变换与透视变换opencv

图像的仿射变换 两个向量空间之间的仿射变换(仿射映射)(Affine Transformation或Affine Map)是由一个线性变换接上一个平移组成。仿射变换可以理解为对坐标进行放缩、旋转、平移后取得的新坐标值,或者是经过坐标的放缩、旋转、平移后原坐标在新坐标领域中的值,可以用以下函数来描述: f(x)=Ax+ b 其中,A是变形矩阵,b是平移矩阵。在二维空间里,A可以按四个步骤分解:...
阅读(1154) 评论(0)

opencv图像角点检测

角点检测(兴趣点、关键点、特征点)是计算机视觉系统中用来获得图像特征的一种方法,广泛用于运动检测、图像匹配、视频跟踪、三维重建和目标识别等领域中,也称为特征点检测。        角点并没有明确的定义,一般将图像中亮度变化剧烈的点或图像边缘上曲率取极大值的点认为是角点。角点作为图像的重要特征,保留了图像绝大部分的特征信息,又有效地减少了信息的数据量从而有效地提高了运算速度以及匹配的可靠性。 1...
阅读(507) 评论(0)

机器学习之损失函数与风险函数

1.损失函数与风险函数 监督学习的任务就是学习一个模型f作为决策函数,对于给定的输入X,给出相应的输出f(X),这个输出的预测值f(X)与真实值Y可能一致也可能不一致,用一个损失函数(loss function)或代价函数(cost function)来度量预测错误的程度。损失函数是f(X)与Y的非负实值函数,记作L(Y, f(X))。 机器学习常用的损失函数有以下几种: (1)0-...
阅读(2488) 评论(0)

Deep Learning回顾之基于深度学习的目标检测

转自:https://www.52ml.net/20287.html 引言 普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务。其中目标定位是不仅仅要识别出来是什么物体(即...
阅读(6258) 评论(3)

图像边缘检测小结

Roberts算子、Sobel算子、Prewitt算子、 Laplacian算子、拉普拉斯-高斯(Laplacian-Gauss)算子、Canny算子...
阅读(3261) 评论(1)

稀疏编码

稀疏编码算法是一种无监督学习方法,它用来寻找一组“超完备”基向量来更高效地表示样本数据。稀疏编码算法的目的就是找到一组基向量  ,使得我们能将输入向量  表示为这些基向量的线性组合: 参考资源:http://www.csdn123.com/html/itweb/20130729/27223_27235...
阅读(806) 评论(0)
60条 共4页1 2 3 4 下一页 尾页
    个人资料
    • 访问:186298次
    • 积分:2053
    • 等级:
    • 排名:第19788名
    • 原创:43篇
    • 转载:17篇
    • 译文:0篇
    • 评论:122条
    最新评论