Image processing
文章平均质量分 92
u012507022
昨夜西风凋碧树,独上高楼,望尽天涯路
展开
-
三维重建之多频外差解包裹学习笔记
通过相移公式获取条纹图相位主值后,要进行相位展开。相位展开可分为两类:空间相位展开和时间相位展开。目前在工业测量领域大多使用时间相位展开算法,其中Gray编码加相移算法与多频外差原理是使用最为广泛的两种时间相位展开算法。通常基于多频外差原理相位展开的精度与稳定性更好。原创 2020-04-06 15:53:02 · 5448 阅读 · 9 评论 -
Bag-of-words模型原理
BoW模型最初应用于文本处理领域,用来对文档进行分类和识别。BoW 模型因为其简单有效的优点而得到了广泛的应用。其基本原理可以用以下例子来给予描述。给定两句简单的文档:文档 1:“我喜欢跳舞,小明也喜欢。”文档 2:“我也喜欢唱歌。”基于以上这两个文档,便可以构造一个由文档中的关键词组成的词典:词典={1:“我”,2:“喜欢”,3:“跳舞”,4:“小明”,5:“也”,6:“唱歌”}原创 2016-09-05 19:17:29 · 26402 阅读 · 2 评论 -
图像的仿射变换与透视变换opencv
图像有两种常见的几何转换:一种是基于2×3矩阵进行的变换,也叫仿射变换;另一种是基于3×3矩阵的变换,又称透视变换。可以把透视变换当作一个三维平面被一个特定观察者感知的计算方法,而该观察者也许不是垂直观测该平面;透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping);也称为单应性。在计算机视觉中,我们将平面的单应性定义为从一个平面到另一个平面的投影映射,因此,二维平面上的点到相机的原创 2016-12-29 20:23:25 · 3759 阅读 · 0 评论 -
图像处理之Haar特征
Haar-like特征是计算机视觉领域一种常用的特征描述算子(也称为Haar特征,这是因为Haar-like是受到一维haar小波的启示而发明的,所以称为类Haar特征),后来又将Haar-like扩展到三维空间(称为3DHaar-Like)用来描述视频中的动态特征。关于Haar的发展历程如图1所示。图1Haar-like特征的特点 目前最常用的还是Haar原创 2017-01-06 15:12:38 · 36360 阅读 · 4 评论 -
opencv图像角点检测
角点检测(兴趣点、关键点、特征点)是计算机视觉系统中用来获得图像特征的一种方法,广泛用于运动检测、图像匹配、视频跟踪、三维重建和目标识别等领域中,也称为特征点检测。 角点并没有明确的定义,一般将图像中亮度变化剧烈的点或图像边缘上曲率取极大值的点认为是角点。角点作为图像的重要特征,保留了图像绝大部分的特征信息,又有效地减少了信息的数据量从而有效地提高了运算速度以及匹配的可靠性。1原创 2016-12-20 20:35:26 · 8046 阅读 · 1 评论 -
Opencv目标检测之级联分类器训练与测试
OpenCV提供了两个程序可以训练自己的级器opencv_haartraining 与opencv_traincascade。opencv_traincascade是一个新程序,使用OpenCV 2.x API 以C++编写。这二者主要的区别是opencv_traincascade支持 Haar和 LBP (Local Binary Patterns)两种特征,并易于增加其他的特征。与原创 2017-01-02 20:32:10 · 21700 阅读 · 9 评论 -
LBP(局部二进制模式)
LBP(Local Binary Patterns ,局部二进制模式)是一种理论简单、计算高效的非参数局部纹理特征描述子。由于其具有较高的特征鉴别力和较低的计算复杂度, 近期获得了越来越多的关注,在图像分析、计算机视觉和模式识别领域得到了广泛的应用,尤其是在纹理分类和人脸识别两个经典的模式识别问题中,LBP方法得到充分的研究和发展。原创 2016-06-11 10:12:18 · 18213 阅读 · 1 评论 -
视觉显著性检测
视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域)。视觉注意机制(Visual Attention Mechanism,VA),即面对一个场景时,人类自动地对感兴趣区域进行处理而选择性地忽略不感兴趣区域,这些人们感兴趣区域被称之为显著性区域。如图1所示,当看到这幅图像时,图中的四个人最能引起人的注意。原创 2016-10-20 18:05:13 · 41210 阅读 · 2 评论 -
图像处理中常用的彩色模型
颜色模型就是描述用一组数值来描述颜色的数学模型。在彩色图像处理中,选择合适的彩色模型是很重要的。从应用的角度来看,彩色模型可分为两类:面向硬件设备的彩色模型面向视觉感知的彩色模型原创 2016-10-16 14:28:38 · 36988 阅读 · 2 评论 -
行为识别数据集汇总
工欲善其事,必先利其器http://www.cs.utexas.edu/~chaoyeh/web_action_data/dataset_list.html,此链接内容更全,可惜整理完后发现的。1. The KTH Dataset(2004)KTH数据集于2004 年的发布,是计算机视觉领域的一个里程碑。此后,许多新的数据库陆续发布。数据库包括在 4个不同场景下 25 个人完成的 6 ...原创 2016-10-21 07:52:15 · 52382 阅读 · 76 评论 -
图像边缘检测小结
Roberts算子、Sobel算子、Prewitt算子、 Laplacian算子、拉普拉斯-高斯(Laplacian-Gauss)算子、Canny算子原创 2016-10-24 07:25:21 · 34709 阅读 · 1 评论 -
形状匹配之形状上下文(Shape context)
形状上下文特征是一种很流行的形状描述子,多用于目标识别,它采用一种基于形状轮廓的特征描述方法,其在对数极坐标系下利用直方图描述形状特征能够很好地反映轮廓上采样点的分布情况。形状上下文的基本原理如下:Step1:对于给定的一个形状,通过边缘检测算子(如:canny算子)获取轮廓边缘 ,对轮廓边缘采样得到一组离散的点集P={p1,p2,p3,..pn},如图1中的字母A。Step2原创 2016-09-05 07:52:13 · 22907 阅读 · 6 评论 -
灰度共生矩阵
灰度直方图是对图像上单个象素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某距离的两象素分别具有某灰度的状况进行统计得到的。取图像(N×N)中任意一点(x,y)及偏离它的另一点(x+a,y+b),设该点对的灰度值为(g1,g2)。令点(x,y) 在整个图像上移动,则会得到各种(g1,g2)值,设灰度值的级数为k,则(g1,g2)的组合共有k^2种。对于整幅图像,统计出每一种(g1,g原创 2016-06-11 10:08:45 · 13682 阅读 · 3 评论 -
图像检索:颜色聚合向量(CCV)及matlab实现
颜色聚合向量(color coherence vector,CCV)是一种颜色特征,它包含了颜色分布的空间信息。克服了颜色直方图无法表达图像色彩的空间位置的缺点。颜色聚合向量是一种更复杂颜色直方图。它将每个像素分类为聚合的或非聚合的。聚合的像素指的是,该像素属于一个大的连通区域;而非聚合像素指的是,像素位于一个小的连通区域。连通区域大小的标准有我们自己来定,通常为整幅图像像素的1%。大于1%,为大的连通区域。原创 2016-06-11 07:39:00 · 9015 阅读 · 4 评论 -
颜色特征提取
颜色特征是在图像检索中应用最为广泛的视觉特征,主要有(1)颜色直方图 (2)颜色集 (3)颜色矩 (4)颜色聚合向量 (5) 颜色相关图转载 2016-06-08 20:03:56 · 30701 阅读 · 0 评论