Machine learning
文章平均质量分 90
u012507022
昨夜西风凋碧树,独上高楼,望尽天涯路
展开
-
最小二乘支持向量机(LS-SVM)工具箱及使用说明
最小二乘支持向量机Matlab工具箱 下载址: http://www.esat.kuleuven.be/sista/lssvmlab ,Latest version: LS-SVMlab v1.8 (August 16, 2011)如图下载后,直接进行解压得到文件夹原创 2016-03-26 12:53:11 · 46447 阅读 · 18 评论 -
深度学习在计算机视觉领域的前沿进展
在今年的神经网络顶级会议NIPS2016上,深度学习三大牛之一的Yann Lecun教授给出了一个关于机器学习中的有监督学习、无监督学习和增强学习的一个有趣的比喻,他说:如果把智能(Intelligence)比作一个蛋糕,那么无监督学习就是蛋糕本体,增强学习是蛋糕上的樱桃,那么监督学习,仅仅能算作蛋糕上的糖霜转载 2017-01-08 08:21:49 · 11251 阅读 · 1 评论 -
LSTM和递归网络基础教程
来源:http://deeplearning4j.org/zh-lstm#recurrent目录前馈网络递归网络沿时间反向传播梯度消失与梯度膨胀长短期记忆单元(LSTM)涵盖多种时间尺度代码示例与注释资源本页旨在帮助神经网络学习者了解递归网络的运作方式,以及一种主要的递归网络,即LSTM的功能和结构。递归网络是一类人工神经网络,用于识别诸如文本、基因组、手写字迹、语转载 2016-05-09 15:42:57 · 5069 阅读 · 0 评论 -
机器学习算法比较
机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。但是如果你只是在寻找一个“足够好”的转载 2017-01-08 20:15:44 · 1240 阅读 · 0 评论 -
机器学习之梯度下降、批量梯度下降与随机梯度下降
大多数的机器学习算法都涉及某种形式的优化。优化指的是改变以最小化或者最大化某个函数的任务。我们通常以最小化指代大多数优化问题。最大化可由最小化算法最小化来实现。我们把要最小化或者最大化的函数称为目标函数或准则。当我们对其进行最小化时,我们也把它称为代价函数、损失函数或者误差函数。转自:http://blog.csdn.net/wuyanyi/article/details/8003946原创 2017-01-07 21:16:15 · 7833 阅读 · 2 评论 -
稀疏编码
稀疏编码算法是一种无监督学习方法,它用来寻找一组“超完备”基向量来更高效地表示样本数据。稀疏编码算法的目的就是找到一组基向量 ,使得我们能将输入向量 表示为这些基向量的线性组合:参考资源:http://www.csdn123.com/html/itweb/20130729/27223_27235转载 2016-10-23 20:33:42 · 6197 阅读 · 0 评论 -
机器学习之损失函数与风险函数
1.损失函数与风险函数监督学习的任务就是学习一个模型f作为决策函数,对于给定的输入X,给出相应的输出f(X),这个输出的预测值f(X)与真实值Y可能一致也可能不一致,用一个损失函数(loss function)或代价函数(cost function)来度量预测错误的程度。损失函数是f(X)与Y的非负实值函数,记作L(Y, f(X))。机器学习常用的损失函数有以下几种:(1)0-原创 2016-11-17 19:18:35 · 9849 阅读 · 0 评论 -
数据挖掘的基本任务与要解决的问题(数据挖掘入门)
数据挖掘技术的基本任务主要体现在:1)分类与回归 2)聚类 3)关联规则4)时序模式5)偏差检测一、分类与回归分类:指将数据映射到预先定义好的群组或类。 因为在分析测试数据之前,类别就已经确定了,所以分类通常被称为有监督的学习。分类算法要求基于数据属性值来定义类别,通常通过已知所属类别的数据的特征原创 2016-04-05 20:12:55 · 14664 阅读 · 1 评论 -
Deep Learning回顾之基于深度学习的目标检测
转自:https://www.52ml.net/20287.html引言普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务。其中目标定位是不仅仅要识别出来是什么物体(即转载 2016-10-24 09:23:00 · 21520 阅读 · 5 评论 -
大数据、数据挖掘、机器学习与模式识别的关系
数据挖掘、机器学习、模式识别三者的关系,可以说是一脉相承。与数据挖掘、机器学习、模式识别相关的书籍很多,但其实讲的东西都是大同小异,换汤不换药。无非就是神经网络、支持向量机、各种分类、聚类、回归的算法。原创 2016-04-08 13:41:50 · 13230 阅读 · 1 评论 -
池化通俗讲解
来源:http://ufldl.stanford.edu/wiki/index.php/%E6%B1%A0%E5%8C%96#.E6.B1.A0.E5.8C.96.E7.9A.84.E4.B8.8D.E5.8F.98.E6.80.A7池化Contents 1 池化: 概述2 池化的不变性3 形式化描述4 中英文对照5 中文译者转载 2016-04-26 21:07:05 · 10043 阅读 · 0 评论 -
机器学习算法一览表附opencv机器学习模块
机器学习算法一览表(中英对照)附opencv机器学习模块原创 2016-05-16 09:45:39 · 7395 阅读 · 2 评论 -
机器学习之朴素贝叶斯分类器附C++代码
机器学习之朴素贝叶斯分类器基本概念:先验概率(prior probability):是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率。比如,抛一枚硬币,正面朝上的概率P(A)=1/2,就是先验概率。联合概率:表示两个事件共同发生的概率。A与B的联合概率表示为 P(AB) 或者P(A,B),或者P(A∩B)。条件概率:已知事件A发生的条件原创 2016-07-06 08:47:44 · 13970 阅读 · 5 评论 -
计算机视觉、机器学习、模式识别、图像处理领域国内外期刊、会议汇总
重要国际期刊(1) IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI)(2) International Journal of Computer vision(IJCV)(3) IEEE Transactions on Image Processing(4) ACM Transactions on Graphic...原创 2016-03-21 11:22:54 · 11364 阅读 · 0 评论 -
支持向量机分类入门实用指南
支持向量机(SVM)是一种流行的分类技术(也可以用于回归分析)。虽然SVM是比神经网络更容易使用。然而,不熟悉支持向量机的初学者往往不能得到令人满意结果,因为初学者往往错过一些简单但重要的步骤。在本指南中,我们提出了一个简单的操作步骤,通常给出比较理想的结果。 这个指南不是面向SVM研究人员,也不能保证你会达到最高的精度。此外,这里不打算解决具有挑战或困难的问题。目的是给支持向原创 2016-03-12 18:41:26 · 9149 阅读 · 0 评论 -
机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总
本文来源:https://github.com/ty4z2008/Qix/blob/master/dl.md机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1)《Brief History of Machine Learning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、S转载 2016-04-13 21:21:33 · 3374 阅读 · 0 评论 -
当我们说数据挖掘的时候我们在说什么
来源:https://blog.maxleap.cn/zh/archives/263当我们说数据挖掘的时候我们在说什么IN 前端编程开头下定语:统计学习现在市面上谈论到的数据挖掘基本上都是基于统计学习的监督学习或非监督学习问题。尤其以监督学习应用面更广。统计学习的应用分类问题:客户分类模型、异常鉴别、图像识别等标注问题:信息抽取、自然语言转载 2016-04-08 12:19:05 · 944 阅读 · 0 评论 -
深度学习卷积神经网络大事件一览
本文转载自:http://blog.csdn.net/u013088062/article/details/51118744深度学习(DeepLearning)尤其是卷积神经网络(CNN)作为近几年来模式识别中的研究重点,受到人们越来越多的关注,相关的参考文献也是层出不穷,连续几年都占据了CVPR的半壁江山,但是万变不离其宗,那些在深度学习发展过程中起到至关重要的推动作用的经典文献依然值得转载 2016-04-14 10:19:37 · 2047 阅读 · 0 评论 -
生成模型与判别模型
监督学习方法又可以分成两种:1) 生产方法(Generative Approach)2) 判别方法(DiscriminativeApproach)所学到的模型分别称为生成式模型(Generative Model)和判别式模型(Discriminative Model)。监督学习的任务就是学习一个模型(分类器),应用这一模型,对给定的输入预测相应的输出。这个模型的形式有两种:原创 2017-09-10 16:45:41 · 404 阅读 · 0 评论