prim 最小生成树

原创 2013年12月05日 16:16:29

baidu:

假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim算法通过以下步骤可以得到最小生成树:
1:初始化:U={u 0},TE={f}。此步骤设立一个只有结点u 0的结点集U和一个空的边集TE作为最小生成树的初始形态,在随后的算法执行中,这个形态会不断的发生变化,直到得到最小生成树为止。
2:在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U中,其次边的权要最小。找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合,这一点在理解算法时要密切注意。
3:如果U=V,则算法结束;否则重复步骤2。可以把本步骤看成循环终止条件。我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <vector>                    //用vector构造的邻接矩阵
#define MAX 0xfffffff
#define MAX_LEN 5000                  //点节点最大值, 视情况而定

using namespace std;

typedef struct Node                   //点节点
{
	int value;                         //点上或边上的权值
	int next;                          //下个节点
}node;

int mincost[MAX_LEN], num;              //用mincost存储临时最小权值
bool visited[MAX_LEN];
vector<node> map[MAX_LEN];              //图
node t;

int prim(int num)
{
	int i, k, ans, tmin;
	memset(visited, 0, sizeof(visited));    //标记已访问
	for(i = 0; i < num; i++)
	{
		mincost[i] = MAX;
	}
	mincost[0] = 0;
	k = 0;
	while(!visited[k])
	{
		visited[k] = 1;
		for(i = 0; i < map[k].size(); i++)
		{
			if(map[k][i].value <  mincost[map[k][i].next] && !visited[map[k][i].next]) //刷新最小权值
			{
				mincost[map[k][i].next] = map[k][i].value; 
			}
		}
		tmin = MAX;
		for(i = 0; i < num; i++)
		{
			if(mincost[i] < tmin && !visited[i])                        //找到权值最小且没有访问的节点作为下个要访问的节点
			{
				k = i;
				tmin = mincost[i];
			}
		}
	}
	ans = 0;
	for(i = 0; i < num; i++)
	{
		ans += mincost[i];                                   //把到所有点的最小权值相加即为最小生成树的总权值
	}
	return ans;
}

int main()
{
	int n, temp, start, end, min;
	scanf("%d%d", &num, &n);
	for(int i = 0; i < n; i++)
	{
		scanf("%d%d%d", &start, &end, &temp);
		t.value = temp;                             //无向图要插两次
	 	t.next = end;
		map[start].push_back(t);
		t.next = start;
		map[end].push_back(t);
	}
	min = prim(num);
	printf("%d\n", min);
	return 0;
}
/*
6 7
0 1 2
0 3 3
1 2 7
3 4 5
2 4 1
3 5 4
4 5 6
*/


贪心算法——Prim最小生成树

1、首先介绍一下什么是贪心算法: 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。ps:不懂得话可...
  • baidu_28944591
  • baidu_28944591
  • 2016年06月26日 16:50
  • 1762

数据结构:最小生成树--Prim算法

最小生成树 给定一无向带权图,顶点数是n,要使图连通只需n-1条边,若这n-1条边的权值和最小,则称有这n个顶点和n-1条边构成了图的最小生成树(minimum-cost spanning ...
  • zhangxiangDavaid
  • zhangxiangDavaid
  • 2014年08月05日 00:30
  • 10277

最小生成树(prim算法与kruskal算法)(模板)

th写的总结,很不错,转载一下:点击打开链接   首先说一下什么是树:     1、只含一个根节点     2、任意两个节点之间只能有一条或者没有线相连     3、任意...
  • zwj1452267376
  • zwj1452267376
  • 2015年08月13日 08:54
  • 1501

c++ 最小生成树之prim算法

//最小生成树 #include #include #include using namespace std; #define MAX_LINE 7 char tree[MAX_LINE][...
  • zdavb
  • zdavb
  • 2015年04月14日 23:52
  • 989

最小生成树Prim算法理解

MST(Minimum Spanning Tree,最小生成树)
  • yeruby
  • yeruby
  • 2014年08月16日 18:49
  • 85757

prim最小生成树算法原理

prim 最小生成树算法原理 主要需要了解算法的原理、算法复杂度、优缺点 、刻画和度量指标 评价等 可以查阅相关的文献,这部分内容主要整合了两篇博客的内容 分别是:http://blog.csdn....
  • lynnucas
  • lynnucas
  • 2016年05月03日 16:51
  • 3845

最小生成树Prim算法 堆优化

对于最小生成树prim算法中,我们每次要扫描一遍邻接表才能找到最小的边的点,但是如果利用堆这种数据结构来进行优化,我们可以大大减小这种查找的时间消耗 我们利用邻接表和小根堆来进行优化,下面是代码解析...
  • ltyqljhwcm
  • ltyqljhwcm
  • 2016年03月19日 14:02
  • 993

最小生成树(二)--prim算法实现以及堆优化

一、最小生成树---prim算法实现 思想: 1、从任意一个顶点开始构造生成树,假设就从1号顶点吧, 首先将顶点1加入生成树中,用一个一维数组book来标记 哪些顶点已经加入了生成树。  2、用...
  • qq_16997551
  • qq_16997551
  • 2016年04月29日 19:59
  • 841

ACM:prim最小生成树题目汇总

1.http://115.28.138.223/view.page?gpid=T18import java.util.Scanner; public class Main{ static fi...
  • EmilSinclair4391
  • EmilSinclair4391
  • 2016年05月03日 19:20
  • 463

最小生成树之prim算法 原理

最小生成树之prim算法 边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。    最小生成树(MST):权值最小的生成树。    生成树和...
  • hnust_xiehonghao
  • hnust_xiehonghao
  • 2014年07月21日 11:09
  • 3384
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:prim 最小生成树
举报原因:
原因补充:

(最多只允许输入30个字)