- 博客(57)
- 资源 (6)
- 收藏
- 关注
原创 洛谷 暴力枚举 python
烤鸡n=int(input())flag=0k=[]for a in range(3): for b in range(3): for c in range(3): for d in range(3): for e in range(3): for f in range(3): for g in range(3):
2022-02-13 12:43:41 831
原创 leetcode python
替换所有的问号class Solution: def modifyString(self, s: str) -> str: res = list(s) for i in range(len(res)): if res[i] == '?': ##前后两个字母 最多遍历三个字母即可 for b in "abc": if not (i > 0
2022-01-05 13:34:21 397
原创 洛谷动态规划python-最长公共子序列
动态规划算法通常用于求解具有某种最优性质的问题,在这类问题中,可能会有许多可行解。其思想实质是分治思想和解决冗余。适合动态规划法求解的问题,经分解得到的各个子问题往往不是相互独立的。在求解过程中,将已解决的子问题的解进行保存,在需要的时候可以轻松找出。这样就避免了大量无意义的重复计算。基本要素:1.最优子结构性质2.子问题重叠性质3.自底向上的求解方法...
2022-01-02 23:47:01 964
原创 仿生机器人知识体系
陀螺仪(角速度传感器)质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。对一固定点,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。通俗的来讲,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。...
2022-01-01 10:19:02 10610
原创 联邦学习拜占庭鲁棒差分隐私博弈论
贝叶斯博弈(不完全信息博弈)A game in strategic form has three elements:the set of players,which we take to be the finite set,the pure-strategy space for each player,and payoff functions.Bertrand competitionMarginal cost边际成本支付函数
2021-12-31 18:06:42 6013
原创 同态加密 bootstrapping自举算法
同态加密是一种基于数学困难问题的计算复杂性密码学技术,对于经过同态加密的数据进行运算得到的结果与用相同方法处理未经加密的数据得到的结果一致RSA问题就存在同态加密用于区块链
2021-09-01 20:38:15 12999
原创 模版攻击和椭圆曲线
模版攻击被认为是能力最强的侧信道攻击形式,对密码设备的物理安全性带来了严重威胁。然而,与典型的差分能量分析相比,模版攻击构造复杂、影响因素较多,在实际场景中评估人员如果无法在合理的场景中使用模版攻击,往往无法获得期望的结果...
2021-08-31 13:57:40 584
原创 可验证延迟函数(Verifiable Delay Function)recursive length prefix递归长度前缀
RLP是数据在Ethereum底层的编码方法共识层负责验证交易,并将消息纪律在分布式账本中。共识协议包括工作量证明(Proof of Work,PoW)、权益证明(Proof of Stake,PoS)和拜占庭容错(Byzantine Fault Tolerance)等不同协议。传统的区块链技术在很大程度上依赖于底层的PoW机制在分布式系统中达成共识。在分布式系统中,矿工必须利用其计算能力解决密码难题,以便成功地将区块包含到区块链中,直接激励的价值随着时间会降低。
2021-08-28 09:37:53 1967
原创 保研数学问题复习-大数定理 中心极限定理 拉格朗日乘数法线代
三个中值定理的区别、联系和物理意义(罗尔、拉格朗日、柯西)在试验不变的条件下,重复试验多次,随机事件的频率近似它的概率二项分布的极限分布是正态分布切比雪夫大数定理不要求同分布
2021-08-22 22:59:54 2322
原创 python-排序算法
排序算法选择排序快速排序快速排序是一种划分交换排序,其基本思想是通过一趟扫描将待排序的元素分割成独立的三个序列:第一个序列中所有元素均不大于基准元素、第二个序列是基准元素、第三个序列中所有元素均大于基准元素。def partition(lis,left,right):#lis->待排序元素 left->起始索引 right->结束索引 i=left j=right+1 pivot=lis[left] #用序列的第一个元素作为基准元素 while(True): i+=1
2021-08-15 09:58:04 604
原创 数学建模知识~
当不知道随机变量的概率模型服从哪个分布时,可用均匀分布误差、命中率、身高体重等服从正态分布应用举例某食品加工厂主要生产即食产品,一般当天生产的产品必须当天售出,否则就会出现不能保质、或变质、造成一定的经济损失,如果市场需求量大而生产量不足,则也会影响工厂的销售收入,该产品的单位成本为1.5元,单位产品售价为4元。工厂为了避免产品滞销存货过多而造成的经济损失,提出了如何制定合理的生产与库存数量的方案问题,能够使得工厂能有尽可能多的收益,经初步考虑拟从以下两种生产与库存方案中选出一个较好的方案方案
2021-08-09 23:44:54 1445
原创 回溯法-子集树排序树满m叉树
回溯法是在仅给出初始节点、目标节点及产生子节点的条件的情况下,构造出一个图,然后按照深度优先搜索的思想,在有关条件的约束下扩展到目标节点,从而找到问题的解。子集树当所给的问题是从n个元素组成的集合S中找出满足某个性质的一个子集时,相应的解空间树称为子集树。排列树当所给的问题是从n个元素的排列中找出满足某种性质的一个排列时,相应的解空间称为排列树。满m叉树当所给问题的n个元素中每一个元素均有m种选择,要求确定其中的一种选择,使得对这n个元素的选择结果组成的向量满足某种性质,即寻找满足某种热性的n个
2021-04-22 08:47:11 1528
原创 差分约束SPFA
Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法Bellman-Ford 算法采用DP思想,时间复杂度为 O(V*E),Dijkstra 算法采用贪心策略,普通实现的时间复杂度为 O(V2)其中 V 为顶点数量,E 为边的数量。Dijkstra有一个特点:一旦一个顶点添加到S中后,其最短路径长度不再改变,所以不适合含有非负权值的带权图求单源最短路径对于带权有向图 G = (V, E),Dijkstra 算法要求图 G 中边的权值均为非负,而 Bellman-Ford
2022-02-14 22:59:42 574
原创 WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after conne
pip install geatpy -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
2022-02-13 02:00:00 1940
原创 遗传算法Geatpy
import numpy as npimport geatpy as eaimport randomdata=[100,50,50,150,150,20,20,20,15,15,25,25,20,80,50,50,200,50,150,40,150,20,40,20,100,40,40,100,50,50]drop=[79879.56,308.4,1622.16,25522.99,25437.74,15.11,192.49,949.76,233.68,289.97,213.47,1064.9,42
2022-02-12 17:04:07 1753
原创 Longest Substring Without Repeating Character
def Solution(s): start=-1 max=0 dir={} for i in range(len(s)): if s[i] in d and d[s[i]]>start: start=d[s[i]] d[s[i]]=i else: d[s[i]]=i if i-start>max: max=i-start return max
2022-02-11 22:25:51 200
原创 求解线性规划模型之单纯形代码
将一般线性规划模型转化为标准型后,便可使用单纯形算法求解。Scipy的优化器模块optimize可以用来求取不同函数在多个约束条件下的最优化问题最优解判别定理若目标函数中关于非基本变量的所有系数(检验数)小于或等于0,则当前基本可行解就是最优解单纯形算法解约束标准型线性规划问题的步骤如下:1.找出基本变量和非基本变量,将目标函数由非基本变量表示,建立初始单纯形表。2.判别目标函数的所有系数,即检验数。如果所有的系数都≤0,则获得最优解,算法结束3.选入基变量4.选离基变量5.换基变换基
2022-02-10 22:00:32 409
原创 Simplify Path
def simplifyPath(self,path:str)->str: result=[] path_list=path.split('/') for p in path_list: if p: if p=='..'" if result: result.pop() elif p=='.': continue else: result.append(p) res='/'+'/'.join(result) return res
2022-02-09 23:14:05 231
原创 可信计算仅为隐私信息处理提供了一个可信赖的计算环境
可信计算是一种以硬件安全机制为基础的主动防御技术,它通过建立隔离执行的可信赖的计算环境,保障计算平台敏感操作的安全性,实现了对可信代码的保护,达到从体系结构上全面增强系统和网络信任的目的。学术界与工业界普遍认为可信计算的技术思路是通过在硬件平台上引入可信计算平台模块(TPM)提高计算机系统的安全性。同时,我国也对应提出并建立了可信密码模块(TCM)。然而由于信息安全应用需求的不断变化,基于TPM或TCM的信任链已经不能满足现实场景中的应用需求,信任链传递方案存在安全隐患,无法抵御针对度量过程的时间差攻击,并
2022-02-06 22:08:59 10182 1
原创 图像二分类神经网络代码
import torchimport torch.nn as nnimport torch.optim as optimimport torch.utils.dataimport torch.nn.functional as Fimport torchvisionfrom torchvision import transformsfrom PIL import Imagedef check_image(path): try: im = Image.open(path
2022-02-05 17:34:19 1899
原创 python求导
scipy在numpy的基础上增加了大量用于数学计算、科学计算以及工程计算的模块,包括线性代数、常微分方程求解、信号处理、图像处理、稀疏矩阵等。
2022-02-04 20:50:02 1524
原创 python常用内置函数
内置函数bin()、oct()、hex()用来将整数转换为二进制、八进制和十六进制形式,这三个函数都要求参数必须为整数。remove() 方法在移除一个不存在的元素时会发生错误
2022-02-03 22:33:29 8168 2
原创 Python小数整数输出
f = 1.6#小数部分舍弃print("1.6直接整型输出是 %d"%f,end="\n")#四舍五入print("1.6利用浮点数的精度范围输出%.0f"%f)
2022-02-01 21:05:26 8181
原创 Shapley值
1951年,由诺奖得主Shapley提出的Shapley值是公平地定量评估用户边际贡献度的常用指标。Shapley值的概念来源于合作博弈,之所以应用如此广泛,是因为它具有公平性、个体理性化和可加性等优越性质。在联邦学习中,一个参与节点的Shapley值能够评估该节点对聚合的最终模型的边际贡献量。然而,Shapley值的求解往往需要指数级的计算复杂度。...
2022-01-29 18:01:51 3788
原创 联邦学习加速方法
联邦学习的模型训练涉及模型的本地迭代更新和模型参数的传输两大过程,模型计算和通信传输成为影响联邦学习效率的两大因素。联邦学习是分布式机器学习的一种实现形式,很多分布式的加速方案依旧适用该场景。...
2022-01-28 22:40:48 1390
原创 格密码与安全证明
格密码是典型的后量子密码,被公认为能够抵御量子攻击,其自身具有一些其他后量子密码不具有的优势:1.基于随机格上平均状态下格问题的困难性与最坏状态下格问题的困难性等价。2.可证明安全性。3.潜在的计算效率。格公钥密码主要使用小整数的模加和模乘运算,无须使用诸如模指数运算等复杂耗时的运算,计算复杂度较低。4.代数结构简单,便于软硬件实现。5.线性密码,其特殊的几何结构在全同态密码的设计中拥有先天的优势。...
2022-01-23 05:00:00 955
原创 dummy node链表
在单链表中增加一个头结点的优点如下:(1)单链表中首结点的插入和删除操作与其他结点一致,无须进行特殊处理(2)无论单链表是否为空都有一个头结点,因此统一了空表和非空表的处理过程...
2022-01-22 05:00:00 401
原创 模型选择方法:Holdout检验交叉验证与正则化
Holdout直接将数据集D划分为两个互斥的集合,其中一个集合作为训练集S,另外一个作为测试集T,即D=S∪T,S∩T=0.在S上训练出模型后,用T来评估其测试误差,作为对泛化误差的评估交叉验证如果给定的样本数据充足,进行模型选择的一种简单方法是随机地将数据集分成三个部分,分别为训练集(训练模型)、验证集(模型的选择)、测试集(对学习方法的评估)。在学习到的不同复杂度的模型中,选择对验证集有最小预测误差的模型。由于验证集有足够多的数据,用它对模型进行选择也是有效的。但是,在许多实际应用中数据是不充
2022-01-21 05:00:00 2949
原创 python使用指定分隔符将列表中所有字符串元素连接成一个字符串
def join(List,sep=None): return (sep or ' ' ).join(List)aList=['a','b','c']Join(aList)>>>'a b c'Join(aList,',')>>>'a,b,c'
2022-01-20 05:00:00 2240
原创 python函数参数和返回值
python 允许对函数参数和返回值类型进行标注,但实际上并不起任何作用,只是看起来方便。def test(x:int,y:int)->int: ''' x and y must be integers,return an integer x+y''' assert isinstance(x,int),'x must be integer' assert isinstance(y,int),'y must be integer' z=x+y assert i
2022-01-19 05:00:00 1146
原创 PyTorch实现联邦学习目标检测
PyTorch基础Tensor是PyTorch的基础数据结构,是一个高维的数组,其作用类似于Numpy中的ndarray。目标检测算法常见的计算机视觉任务可以归纳为图像分类、目标检测、语义分割等。在图片数据中找到指定的物体,并能够正确定位位置,这就是典型的目标检测任务。边界框与锚框边界框用来描述目标位置,是一个矩形框,由左上角坐标和右下角坐标来共同确定。在运行目标检测算法时,通常会在图像中采样多个候选区域,不同的目标检测算法所使用的采样算法也不一样,而YOLO系列算法则通过定义锚框来提取,锚框
2022-01-18 07:00:00 2254
原创 用stack解决迷宫问题
maze=[ [1,1,1,1,1], [1,0,0,1,1], [1,0,1,1,1], [1,0,0,1,1], [1,1,0,0,1], [1,1,1,0,1]]dirs=[ lambda x,y:(x+1,y), lambda x,y:(x-1,y), lambda x,y:(x,y-1), lambda x,y:(x,y+1)]def maze_path(x1,y1,x2,y2): stack=[ ]
2022-01-17 15:49:31 488
原创 拜占庭鲁棒Krum聚合算法
将梯度与其它梯度的范数距离的和作为该梯度的得分,然后选取得分最低,即“和大多数梯度都相似”的梯度作为聚合梯度。Krum不会影响模型的正常收敛,并且在攻击者控制worker的占比不超过50%的情况下能保证模型的鲁棒性。...
2022-01-16 17:55:14 3373
原创 隐私计算安全
隐私脱敏技术泛在互联环境下,数据所有者、数据控制者和数据处理者分离,在不同信息系统之间或不同管理者之间交换隐私信息时,为了实施隐私保护,脱敏是最好的技术选择。基于匿名的隐私脱敏通过将用户的原始数据进行泛化、抑制、置换等方式实现隐私信息的保护。以位置为例,泛化的基本思想是将轨迹上所有的采样点都泛化为对应的匿名区域,使攻击者无法获得准确位置。该方法中最有效的就是轨迹k-匿名技术。抑制的基本思想是在轨迹数据正式发布之前,剔除或删去现有轨迹中的用户高频率访问位置或一些敏感位置。对位置信息进行泛化、抑制
2022-01-12 12:08:52 2660 1
原创 单机优化之确定性算法和随机性算法随机梯度下降
概述目前大多数关于优化算法的收敛性质都需要依赖目标函数具有某些良好的数学属性,比如凸性和光滑性。凸性会给优化带来很大的方便。原因是,凸函数的任何一个局部极小点都是全局最优解。光滑性刻画了函数变化的缓急程度。直观上,如果自变量的微小变化只会引起函数值的微小变化,我们说这个函数是光滑的。对于不可导函数,通常用Lipschitz性质来描述光滑性。依据是否对数据或变量的维度进行随机采样,把优化算法分为确定性算法和随机算法。依据算法在优化过程中所利用的是一阶导数信息还是二阶导数信息,把优化算法分为一阶方法和
2022-01-11 07:00:00 1576
原创 Pysyft
provides secure and private Deep Learning in Python使用 conda activate 激活虚拟环境时报错
2022-01-10 12:15:45 710
原创 CNN模型量化压缩降低分布式通信开销
想要在移动端部署CNN,需要模型大小比较小、时耗比较低,才能适用于算力和内存受限的移动设备。空域滤波从通信的内容出发,尽量减少要通信的数据量,对传输的内容进行过滤、压缩或者量化,减少每一次传输所需的时间。模型过滤比较直观的方法是对模型参数进行过滤。如果一次迭代过程中某些参数没有明显变化,则可以将其过滤掉,从而减少通信量。实践中,在训练的后期,众多的参数会趋于收敛,只需要保留少量的参数更新信息,整个模型学习的结果就可以有效地保留下来。模型低秩化处理模型过滤通过去除不重要的参数来减少通信量,而模型低
2022-01-09 17:47:36 620
原创 WSN无线传感网
WSN能够实时监控目标环境信息,并通过无线和有线通信手段将感知和监控的信息传递到信息处理中心,同时信息处理中心亦可远程控制部署在目标区域的传感网,实现灵活便捷的双向通信,特别适合构建辅助远程医疗和家庭养老的智能家居网络环境。具体来说, 可以在家庭环境部署一定数量的温度、湿度、光线等环境类传感器和脉搏、血压及血糖等生理医疗类传感器,并通过无线传感协议组建智能家居WSN, 从而实时自动监测和上传居家老人的生理活动数据,实现疾病的积极预防和早期诊断,并能大幅度降低医疗成本。...
2021-12-30 17:29:51 3404
原创 RFID射频标签
交变的磁场产生交变的电场产生感应电流的条件:1.电路是闭合的2.穿过闭合电路的磁通量发生变化3.电路的一部分在磁场中做切割磁感线运动利用无线射频信号空间耦合的方式来实现无接触的标签信息自动传输与识别的技术RFID标签的结构RFID标签由存储数据的RFID芯片、天线与电路组成...
2021-12-30 15:56:05 3154
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人