【无向图的双连通分量】

Tarjan算法求 块(点双连通分量) O(n+m)

割顶可以属于多个块中,而非割顶只能属于一个快,所以不能直接去掉割顶求块,而需要下面算法

#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
#define min(a,b) (a>b?b:a)
#define max(a,b) (a>b?a:b)
#define MAXN 10010
struct Edge{
    int from,to;
    Edge(int a = 0, int b = 0){from = a, to = b;}
};
int pre[MAXN], bccno[MAXN], bcc[MAXN],clock,bcc_cnt,n;
//bcc[1~n]存放当前块中的各个节点,bccno[1~n]标记每个节点所在块的编号
vector<int> g[MAXN];
stack<Edge> s;//存放块 边的栈,不需要清空,每次结束算法后自己清空了

int dfs(int u,int fa)//就是基于求割顶的同时已经计算出各个块
{
    int lowu = pre[u] = ++clock;
    int sz = g[u].size(), child = 0;
    rep(i,0,sz)
    {
        int v = g[u][i];
        if(v == fa) continue;
        Edge e =Edge(u,v);
        if(!pre[v])
        {
            s.push(e);
            int lowv = dfs(v,u);
            lowu = min(lowu,lowv);
            if(lowv >= pre[u])//割点
            {
                bcc_cnt++;
                bcc[0] = 0;
                Edge x;
                do{
                    x = s.top();s.pop();
                    if(bccno[x.from] != bcc_cnt) bcc[++bcc[0]] = x.from, bccno[x.from] = bcc_cnt;
                    if(bccno[x.to] != bcc_cnt) bcc[++bcc[0]] = x.to, bccno[x.to] = bcc_cnt;
                }while(!(x.from == u && x.to == v));
                /*这里可以对每个块处理*/
            }
        }
        else if(pre[v] < pre[u])
        {
            s.push(e);
            lowu = min(lowu,pre[v]);
        }
    }
    return lowu;
}
void sloved()
{
    bcc_cnt = clock = 0;
    clc(pre,0);
    clc(bccno,0);
    rep(i,0,n) if(!pre[i]) dfs(i,-1);
}

Tarjan算法求 边双连通分量)O(n+m)

桥不会在任何边双连通分量中,所以去除桥后的连通块就是边双连通分量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值