关闭

[置顶] ACM竞赛中的逆向思维

在竞赛过程中,尤其是近期训练,遇到了不少一定要用逆向思维才能解决的题目。 为此做一系列的总结。希望能够对大家有所帮助。 同时,我也会做成PPT,供14级训练使用。其中有部分问题摘自于2005年国家集训队唐文斌的《正难则反–浅谈逆向思维在解题中的应用》论文。容斥方面逆向思维在容斥方面的应用相当广泛,也可以说容斥就是逆向思维的一种体现。HDU 5072 Coprime 同色三角形题目大意:给了nn个...
阅读(1228) 评论(1)

Logistic Regression的思考与整理

在NYU上了Machine Learning,学到了一些以前没有注意或者不知道的知识。在原有部分博文的基础上进行更详细地讲解。关于回归算法的Bias和Variance加深了对误差理论的理解。对于一个输入为x⃗ \vec x的回归算法,我们设算法输出的预测函数为g(x)g(x),算法的真正分类函数为f(x)f(x)。我们期望的就是让g(x)g(x)尽可能地与f(x)f(x)靠近。我们将f(x)f(x)...
阅读(165) 评论(0)

边缘检测之Robert算子

Robert算子,之前被用到了图像增强中的锐化,原因是作为一阶微分算子,Robert简单,计算量小,对细节反应敏感。算子对边缘检测的作用是提供边缘候选点,Robert算子相比于其他3x3算子,在不经过后处理时,可以给出相对较细的边缘。算子介绍以下坐标新采用的是i,ji, j坐标系,其中i=−y,j=xi = -y, j = x。Robert算子的形式是Gi≅−1001 Gj≅01−10G_i \co...
阅读(95) 评论(0)

高斯噪声与高斯滤波

噪声噪声表现形式噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。噪声对数字图像的影响对于数字图像信号,噪声表为或大或小的极值,这些极值通过加减作用于图像像素的真实灰度值上,对图像造成亮、暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。高斯噪...
阅读(173) 评论(0)

Memory Game

Memory GameThe game of Memory is played with NN pairs of cards where each pair has the same picture, i.e. there are NN different pictures, and each of them appear on exactly two cards.The cards are shu...
阅读(86) 评论(0)

正则化方法:L1和L2 regularization、数据集扩增、dropout

正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work。 为了防止overfitt...
阅读(128) 评论(0)

理解神经网络中的Dropout

dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络。过拟合是深度神经网(DNN)中的一个常见问题:模型只学会在训练集上分类,这些年提出的许多过拟合问题的解决方案,其中dropout具有简单性而且效果也非常良好。算法概述我们知道如果要训练一个大型的网络,而...
阅读(447) 评论(0)

浅谈Django中的Signal

前言在web开发中, 你可能会遇到下面这种场景: 在用户完成某个操作后, 自动去执行一些后续的操作. 譬如用户完成修改密码后, 你要发送一份确认邮件. 当然可以把逻辑写在一起,但是有个问题是,触发操作一般不止一种(如用户更改了其它信息的确认邮件),这时候这个逻辑会需要写多次,所以你可能会想着DRY(Don’t repeat yourself),于是你把它写到了一个函数中,每次调用。当然这是...
阅读(100) 评论(0)

Django权限机制的实现

作者:Gevin 链接:http://www.jianshu.com/p/01126437e8a4 來源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。1. Django权限机制概述权限机制能够约束用户行为,控制页面的显示内容,也能使API更加安全和灵活;用好权限机制,能让系统更加强大和健壮。因此,基于Django的开发,理清Django权限机制是非常必要的。1.1...
阅读(140) 评论(0)

浅谈Django中的mptt

层级结构层级结构,也叫树形结构。在实际应用中,你经常需要保存层级结构到数据库中。比如说:你的网站上的目录。不过,除非使用类XML的数据库,通用的关系数据库很难做到这点。对于树形数据的存储有很多种方案。主要的方法有两种:邻接表模型,以及修改过的前序遍历算法。因为mptt使用的是修改过的前序遍历算法,而此算法又是从邻接表改进得来的,所以本文先要说这两块。本文以食品商店为例,通过类别、颜色以及种类来对其食...
阅读(229) 评论(0)

浅谈数据库隔离级别与锁机制

因为数据库中的事务是具有隔离性的,一个事务的运行不应该影响另一个事务的运行。 但是因为并行机制的存在,会有一系列的问题: 脏读:事务A修改了一个数据,但未提交,事务B读到了事务A未提交的更新结果,如果事务A提交失败,事务B读到的就是脏数据。 不可重复读:在同一个事务中,对于同一份数据读取到的结果不一致。比如,事务B在事务A提交前读到的结果,和提交后读到的结果可能不同。 幻读:在同一...
阅读(296) 评论(1)

直方图变换

直方图变直方图拉伸(Histogram stretching)图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”...
阅读(184) 评论(0)

朴素贝叶斯分类

背景 我们先举一个例子,关于向天上抛硬币的实验,有一个训练集{h,t,x,t,t,t,t}\{h,t,x,t,t,t,t\} 。那么我们通过这个训练集预测下一个抛的结果就应该是t,因为P(t)=57P(t) = {5\over 7}是最大的。 我们再举一个例子,现在有两种假设 1. 老师被外星人绑架了 — P(1)=0.00...01P(1) = 0.00...01 2. 老...
阅读(430) 评论(0)

浅谈数据库查询过程(Query Processing)

我们知道,目前通用的数据库查询语言是SQL语言(Structured Query Language)。SQL语言也是一种编译型语言,需要SQL编译器编译后才能执行,但它与C、C++、Java等语言不同,SQL语言是一种非过程化语言,这意味着使用SQL进行操作的时候,你只需要指定你要达到什么目的,而无需指明要怎样达到目的。 既然用户只需要解决“做什么”的问题,那么,“怎么做”的问题正是本文要讨论的问...
阅读(150) 评论(0)

浅谈数据库事务(transaction)

事务的定义事务(txn)是一系列在共享数据库上执行的行为,以达到更高层次更复杂逻辑的功能。事务是DBMS中最基础的单位,事务不可分割。ACIDACID,是指在可靠数据库管理系统(DBMS)中,事务(transaction)所应该具有的四个特性:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。原子性原子性是指事务是一个不可再...
阅读(745) 评论(0)

深入理解DB2索引(Index)

原文地址 索引(Index)是数据库管理系统中一个非常重要的数据结构,索引的合理使用能够极大提高数据库系统的性能。那么,什么是索引?索引有时如何提高数据库系统性能的呢? 阅读本文时建议参考:《深入理解数据库磁盘存储(Disk Storage)》 索引概念 以一本书为例,通常一本书开头会有目录,而后才是正文,通过目录中每行左侧的标题和右侧的页码,我...
阅读(196) 评论(0)
491条 共33页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:620976次
    • 积分:10152
    • 等级:
    • 排名:第1880名
    • 原创:407篇
    • 转载:78篇
    • 译文:6篇
    • 评论:113条
    博客专栏
    相关链接
    最新评论