龙格-库塔(Runge-Kutta)方法数学原理及实现

四阶龙格-库塔方法是一种高精度的微分方程数值解算法,通过在区间内多个点的斜率加权平均提高精度。其基本思想源于Taylor展开,要求解的光滑性好。这种方法在工程中有广泛应用,但针对不光滑的解,可能需要选用低阶算法。文章还提及了C语言实现的可能性。
摘要由CSDN通过智能技术生成

龙格-库塔(Runge-Kutta)方法

龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。


对于一阶精度的欧拉公式有:

yi+1=yi+hki

其中 h 为步长,则 yi+1 的表达式与 y(xi+1) 的Taylor展开式的前两项完全相同,即 局部截断误差 O(h2)
当用点 xi 处的斜率近似值 k1 与右端点 xi+1 处的斜率 k2 的算术平均值作为平均斜率 k 的近似值,那么就会得到二阶精度的改进欧拉公式:
yi+1=yi+h(k1+k2)

其中 k1=f(xi,yi)
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值