UVA11419【输出最小点覆盖】

转自: http://www.matrix67.com/blog/archives/116

二分图最大匹配的König定理及其证明
本文将是这一系列里最短的一篇,因为我只打算把König定理证了,其它的废话一概没有。
以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上去找找答案:
1. 什么是二分图;
2. 什么是二分图的匹配;
3. 什么是匈牙利算法;(http://www.matrix67.com/blog/article.asp?id=41)
4. König定理证到了有什么用;
5. 为什么o上面有两个点。

König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。比如,下面这个图中的最大匹配和最小点覆盖已分别用蓝色和红色标注。它们都等于3。这个定理相信大多数人都知道,但是网络上给出的证明并不多见。有一些网上常见的“证明”明显是错误的。因此,我在这里写一下这个定理的证明,希望对大家有所帮助。


假如我们已经通过匈牙利算法求出了最大匹配(假设它等于M),下面给出的方法可以告诉我们,选哪M个点可以覆盖所有的边。
匈牙利算法需要我们从右边的某个没有匹配的点,走出一条使得“一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现”的路(交错轨,增广路)。但是,现在我们已经找到了最大匹配,已经不存在这样的路了。换句话说,我们能寻找到很多可能的增广路,但最后都以找不到“终点是还没有匹配过的点”而失败。我们给所有这样的点打上记号:从右边的所有没有匹配过的点出发,按照增广路的“交替出现”的要求可以走到的所有点(最后走出的路径是很多条不完整的增广路)。那么这些点组成了最小覆盖点集:右边所有没有打上记号的点,加上左边已经有记号的点。看图,右图中展示了两条这样的路径,标记了一共6个点(用 “√”表示)。那么,用红色圈起来的三个点就是我们的最小覆盖点集。
首先,为什么这样得到的点集点的个数恰好有M个呢?答案很简单,因为每个点都是某个匹配边的其中一个端点。如果右边的哪个点是没有匹配过的,那么它早就当成起点被标记了;如果左边的哪个点是没有匹配过的,那就走不到它那里去(否则就找到了一条完整的增广路)。而一个匹配边又不可能左端点是标记了的,同时右端点是没标记的(不然的话右边的点就可以经过这条边到达了)。因此,最后我们圈起来的点与匹配边一一对应。
其次,为什么这样得到的点集可以覆盖所有的边呢?答案同样简单。不可能存在某一条边,它的左端点是没有标记的,而右端点是有标记的。原因如下:如果这条边不属于我们的匹配边,那么左端点就可以通过这条边到达(从而得到标记);如果这条边属于我们的匹配边,那么右端点不可能是一条路径的起点,于是它的标记只能是从这条边的左端点过来的(想想匹配的定义),左端点就应该有标记。
最后,为什么这是最小的点覆盖集呢?这当然是最小的,不可能有比M还小的点覆盖集了,因为要覆盖这M条匹配边至少就需要M个点(再次回到匹配的定义)。

上面证明的思路主要是证明这样选择的点有M个且覆盖了所有边。  模板如下。

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;

const int maxn = 1000 + 5; // 单侧顶点的最大数目

// 二分图最大基数匹配
struct BPM {
  int n, m;               // 左右顶点个数
  vector<int> G[maxn];    // 邻接表
  int left[maxn];         // left[i]为右边第i个点的匹配点编号,-1表示不存在
  bool T[maxn];           // T[i]为右边第i个点是否已标记

  int right[maxn];        // 求最小覆盖用
  bool S[maxn];           // 求最小覆盖用

  void init(int n, int m) {
    this->n = n;
    this->m = m;
    for(int i = 0; i < n; i++) G[i].clear();
  }

  void AddEdge(int u, int v) {
    G[u].push_back(v);
  }

  bool match(int u){
    S[u] = true;
    for(int i = 0; i < G[u].size(); i++) {
      int v = G[u][i];
      if (!T[v]){
        T[v] = true;
        if (left[v] == -1 || match(left[v])){
          left[v] = u;
          right[u] = v;
          return true;
        }
      }
    }
    return false;
  }

  // 求最大匹配
  int solve() {
    memset(left, -1, sizeof(left));
    memset(right, -1, sizeof(right));
    int ans = 0;
    for(int u = 0; u < n; u++) { // 从左边结点u开始增广
      memset(S, 0, sizeof(S));
      memset(T, 0, sizeof(T));
      if(match(u)) ans++;
    }
    return ans;
  }

  // 求最小覆盖。X和Y为最小覆盖中的点集
  int mincover(vector<int>& X, vector<int>& Y) {
    int ans = solve();
    memset(S, 0, sizeof(S));
    memset(T, 0, sizeof(T));
    for(int u = 0; u < n; u++)
      if(right[u] == -1) match(u); // 从所有X未盖点出发增广
    for(int u = 0; u < n; u++)
      if(!S[u]) X.push_back(u); // X中的未标记点
    for(int v = 0; v < m; v++)
      if(T[v]) Y.push_back(v);  // Y中的已标记点
   return ans;
  }
};

BPM solver;

int R, C, N;

int main(){
  int kase = 0;
  while(scanf("%d%d%d", &R, &C, &N) == 3 && R && C && N) {
    solver.init(R, C);
    for(int i = 0; i < N; i++) {
      int r, c;
      scanf("%d%d", &r, &c); r--; c--;
      solver.AddEdge(r, c);
    }
    vector<int> X, Y;
    int ans = solver.mincover(X, Y);//把结果放在X,Y里面
    printf("%d", ans);
    for(int i = 0; i < X.size(); i++) printf(" r%d", X[i]+1);
    for(int i = 0; i < Y.size(); i++) printf(" c%d", Y[i]+1);
    printf("\n");
  }
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值