[DeeplearningAI笔记]第二章1.10-1.12梯度消失,梯度爆炸,权重初始化

[DeeplearningAI笔记]第二章1.10-1.12梯度消失,梯度爆炸,权重初始化

觉得有用的话,欢迎一起讨论相互学习~

我的微博我的github我的B站

吴恩达老师课程原地址

1.10 梯度消失和梯度爆炸

  • 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度.

  • 假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]…W[L]"

  • 为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响)

  • 这样的话,输出 y ^ = w [ l ] ∗ w [ l − 1 ] ∗ w [ l − 2 ] . . . w [ 2 ] ∗ w [ 1 ] ∗ x \hat{y}=w[l]*w[l-1]*w[l-2]...w[2]*w[1]*x y^=w[l]w[l1]w[l2]...w[2]w[1]x

  • 假设每层的W的值相等都为: [ 1.5 0 0 1.5 ] \begin{bmatrix}1.5&0\\0&1.5\\\end{bmatrix} [1.5001.5]

  • 从技术上讲第一层的权值可能不同,基于此我们有式子 y ^ = w [ 1 ] ∗ [ 1.5 0 0 1.5 ] L − 1 ∗ x \hat{y}=w[1]*\begin{bmatrix}1.5&0\\0&1.5\\\end{bmatrix}^{L-1}*x y^=w[1][1.5001.5]L1x

  • 对于一个深层神经网络来说层数L相当大,也就是说预测值 y ^ \hat{y} y^实际上是以指数级增长的,它增长的比率是 1. 5 L 1.5^L 1.5L,因此对于一个深层神经网络来说,y的值将爆炸式增长.相反的,如果权重是0.5,有 y ^ = w [ 1 ] ∗ [ 0.5 0 0 0.5 ] L − 1 ∗ x \hat{y}=w[1]*\begin{bmatrix}0.5&0\\0&0.5\\\end{bmatrix}^{L-1}*x y^=w[1][0.5000.5]L1x 因此每个矩阵都小于1,假设x[1]x[2]的输入值都是1,那么激活函数值到最后会变成 0. 5 ( L − 1 ) 0.5^{(L-1)} 0.5(L1)激活函数值将会以指数级别下降.

  • 对于深层神经网络最终激活值的直观理解是,以上述网络结构来看,如果每一层W只比1大一点,最终W会爆炸级别增长,如果只比W略微小一点,在深度神经网络中,激活函数将以指数级递减.

  • 虽然只是论述了对于最终激活函数输出值将以指数级别增长或下降,这个原理也适用与层数L相关的导数或梯度函数也是呈指数增长或呈指数递减

  • 直观上理解,梯度消失会导致优化函数训练步长变小,使训练周期变的很长.而梯度爆炸会因为过大的优化幅度而跨过最优解

ps: 对于该视频中关于梯度消失和梯度爆炸的原理有一些争论

请参考

1.11 神经网络中的权重初始化

  • 对于梯度消失和梯度爆炸的问题,我们想出了一个不完整的解决方案,虽然不能彻底解决问题但却很有用,有助于我们为神经网络更谨慎的选择随机初始化参数

单个神经元权重初始化

  • 假设神经元有四个特征输入,暂时忽略b对神经元的作用则: z = w 1 x 1 + w 2 x 2 + w 3 x 3 + . . . + w n x n z=w_{1}x_{1}+w_{2}x_{2}+w_{3}x{3}+...+w_{n}x_{n} z=w1x1+w2x2+w3x3+...+wnxn

  • 为了防止梯度爆炸或者梯度消失,我们希望 w i w_{i} wi尽可能小,最合理的方法就是设置 W 方 差 为 1 n W方差为\frac{1}{n} Wn1 n表示神经元的输入特征数量

  • 更简洁的说,如果你用的是Sigmoid函数,设置某层权重矩阵 W [ l ] = n p . r a n d o m . r a n d n ( s h a p e ) ∗ n p . s q r t ( 1 n [ l − 1 ] ) ( 该 层 每 个 神 经 元 的 特 征 数 量 分 之 一 , 即 l 层 上 拟 合 的 单 元 数 量 ) W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{[l-1]}})(该层每个神经元的特征数量分之一,即l层上拟合的单元数量) W[l]=np.random.randn(shape)np.sqrt(n[l1]1)(,l)

  • 如果你用的是ReLU激活函数,设置方差为 2 n \frac{2}{n} n2更好,更简洁的说,就是设置某层权重矩阵 W [ l ] = n p . r a n d o m . r a n d n ( s h a p e ) ∗ n p . s q r t ( 2 n [ l − 1 ] ) ( 该 层 每 个 神 经 元 的 特 征 数 量 分 之 一 , 即 l 层 上 拟 合 的 单 元 数 量 ) W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}})(该层每个神经元的特征数量分之一,即l层上拟合的单元数量) W[l]=np.random.randn(shape)np.sqrt(n[l1]2)(,l)

  • 如果你用的是Tanh激活函数,则设置某层权重矩阵为 W [ l ] = n p . r a n d o m . r a n d n ( s h a p e ) ∗ n p . s q r t ( 1 n [ l − 1 ] ) W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{[l-1]}}) W[l]=np.random.randn(shape)np.sqrt(n[l1]1)或者为 W [ l ] = n p . r a n d o m . r a n d n ( s h a p e ) ∗ n p . s q r t ( 2 n [ l − 1 ] + n l ) W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}+n^{l}}) W[l]=np.random.randn(shape)np.sqrt(n[l1]+nl2)

  • 这些方法都被成为Xavier 初始化(Xavier initialization),实际上,NG认为所有这些公式都只是给你一个起点,它们给出初始化权重矩阵的方差的默认值,如果你想添加方差,则方差参数则是另一个你需要调整的超级参数,例如对于ReLU激活函数而言,你可以尝试给公式 W [ l ] = n p . r a n d o m . r a n d n ( s h a p e ) ∗ n p . s q r t ( 2 n [ l − 1 ] ) W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}}) W[l]=np.random.randn(shape)np.sqrt(n[l1]2)添加一个乘数参数,但是NG认为相对于其他参数的调优,通常把它的调优优先级放得比较低.

1.12 梯度的数值逼近

主要讲利用双边误差计算公式:
f ( θ + ϵ ) − f ( θ − ϵ ) 2 ϵ ≈ g ( θ ) \frac{f(\theta+\epsilon)-f(\theta-\epsilon)}{2\epsilon}\approx{g(\theta)} 2ϵf(θ+ϵ)f(θϵ)g(θ)
利用这个公式简单的估计函数的微分.

补充资料

梯度检查

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值