- 博客(168)
- 收藏
- 关注
原创 AutoGen实战应用
1.什么是Agent?2.Agent和大模型的关系1.大模型本质就是一个很大的深度学习模型(理解数据特征)模型只具备感知层能力,无逻辑判断能力大模型数据非常大,文本过大,训练出现交叠,出现幻觉用户提问包含较复杂的逻辑时候,大模型无法给到满意答复,因为无法判断。在大模型架构中接入Agent来进行判断,来解决幻觉问题。用户提出需求后,交给中间的代理 Agent,Agent分解用户需求,指定需求分解后新的标准,
2025-02-10 22:50:44
549
原创 Win+安装Ollama+本地Deepseek-R1+Cherrystudio使用
本文主要介绍 win 本地安装 Ollama ,本地部署 Ollama 的 deepseek-r1:7b 大模型,使用具有界面画操作的工具 Cherrystudio进行操作。文章内容仅供参考。 Ollama 是一个开源的框架,旨在本地运行大型语言模型(LLM)。它提供了一个简洁且用户友好的命令行界面,使得用户可以轻松部署和管理各种开源的大型语言模型。
2025-02-07 22:03:53
1941
原创 Langchain+文心一言调用
在“我的应用”中查看申请的应用,找到"APPID","APISecret","APIKey"调用模型api,使用tokens。选择自己想要的应用,获取key。文新一言的key值申请。
2025-01-23 22:30:25
1031
原创 Python+langchain+通义千问qwen(大模型实现自己的聊天机器人)
langchain是一个用于开发由语言模型驱动的应用程序的框架,致力于简化AI模型应用的开发。简单来说,langchain就是一个(帮助开发者轻松完成AI模型应用开发的)框架,现在支持python和js两个版本,它集成多种大语言模型及第三方API。是调节文本多样性的,让回答更加丰富,为0时就会更加准确,大于0回答的就会带有llm的思维回答(可能会胡编乱造)就是回答内容了,回答的一个字典包含了question和text。搜索灵积模型服务,开通服务,点击立即开通。进入产品控制台,创建api-key。
2025-01-23 14:16:06
442
原创 超详细 CUDA 安装与卸载过程(图文教程)
通过查看,电脑的显卡配置为NVIDIA,Cuda最高版本是12.0,因此Cuda需要安装12.0或12.0以下版本。查看显卡是否是英伟达,如果是英伟达,则可以进行安装Cuda,否则不能安装Cuda。查看显卡大小,可以通过任务管理器查看,到性能中找gpu,发现显卡大小是8G。在dos创建输入命令:nvidia-smi。win+r 进入命令行,输入cmd。
2024-12-25 23:25:38
9430
2
原创 运维面试汇总
如何设计和实现一个 Jenkins Pipeline,以支持多阶段构建、测试和部署流程。Prometheus的拉取模式与zabbix推送模式有何区别?Argo CD中自动同步(Auto-sync)和手动同步的区别与应用场景。Python中的列表和字典是如何实现的?ReplicaSet、Deployment功能是怎么实现的?什么是进程最大数、最大线程数、进程打开的文件数,怎么调整☆。Jenkins pipeline有几种模式,区别是什么?Jenkins Master和Slave是如何协同工作的。
2024-10-28 17:12:41
694
原创 运维工程师面试题
36、已知 apache 服务的访问日志按天记录在服务器本地目录/app/logs下,由于磁盘空间紧张现在要求只能保留最近7天的访问日志!请给出解决办法或配置或处理命令?22、使用tcpdump监听主机为192.168.1.1,tcp端口为8 0的数据,同时将输出结果保存输出到tcpdump.log。35、写一个脚本,实现判断192.168.1.0/24网络里,当前在线的IP有哪些,能ping通则认为在线?144.简述 Kubernetes 中,如何使用 EFK 实现日志的统一管理?
2024-10-28 17:09:14
866
原创 Linux运维大厂面经
持续集成是一种软件开发实践,开发人员频繁地将代码合并到共享仓库中。每次合并后,自动运行测试,以确保新代码的引入不会导致错误。持续部署是自动将应用从开发阶段移至生产阶段的过程,确保软件的快速、自动化部署。容器化是一种虚拟化技术,允许在隔离的环境中运行和部署应用,而不依赖于底层操作系统。Docker是一个流行的容器化平台,它使用容器来打包应用及其依赖项,使得应用能够在任何支持Docker的环境中运行。GitOps是一种实现DevOps实践的方法,它使用Git作为真理的唯一来源。
2024-10-28 17:06:13
811
原创 操作系统八股文面经总结(含答案)
进程本质上是“运行中的程序”,单纯的程序只是保存在磁盘中的一段代码,是静态的,而进程是运行中的代码,是动态的,除了需要保存这段代码外,还需要将进程运行的当前状态,所需资源等信息保存到进程控制块中,操作系统为了管理进程设计的数据结构叫进程控制块,里面存的字段可以分成进程标识符、处理机状态(进程当前运行到什么时候什么状态的一些信息)、进程调度信息、进程控制信息。分页系统中,访问数据需要两次访问内存,第一次访问的是内存中的页表,根据页号和页内偏移量查找并计算出实际物理地址,第二次根据物理地址访问内存取数据。
2024-10-28 17:04:28
774
原创 Docker的常用命令
tVolume:数据卷的位置--- /var/lib/docker/volume/tVolume。docker save -o /root/tomcat.tar tomcat 保存。docker load -i /root/tomcat.tar 加载。docker commit -m "提交镜像" tomcat 提交。docker run -d tomcat 后台启动。docker ps -a 所有的包含停止的和运行的。docker ps 正在运行的。
2024-09-29 08:51:07
729
原创 工作中rpm最常用命令
1. rpm -ivh package.rpm :安装一个新的软件包,其中 "-i" 代表安装,"-v" 表示显示详细信息,"-h" 显示进度条。10. yum install package_name :使用 Yum 包管理器安装软件包,其中 "install" 为安装命令。2. rpm -Uvh package.rpm :升级一个已有的软件包,其中 "-U" 代表升级,其余参数与上述相同。3. rpm -e package_name :删除一个软件包,其中 "-e" 代表卸载。
2024-09-23 08:43:33
314
原创 混淆矩阵、准确率、精准率、召回率
所有被判断为好水果的个数中,实际所有好水果的个数占比: 50 / 55 = TP / ( TP + FP ) =精准率。实际所有好水果总数中被判断为好水果个数占比:50 / 60 = TP / ( TP + FN ) = 召回率。坏: 40 个 = 5个被判断为好水果 + 15个被判断为坏水果。好 :60 个 = 50 个被判断为好水果 + 10 个被判断为坏水果。判断水果是好水果还是坏水果。实际所有好水果总数中被判断为好水果个数:TP = 50。
2024-07-13 13:42:55
208
原创 深度学习中Transformer的注意力机制底层实现原理(超详细)
学习Transformer之前我们先看一下作者论文中的模型,如下图所示:本章内容主要是自己学习笔记,在学习过程中总结和整理,希望对各位有所帮助。本章学习从基础模型 Transformer 拆解,分析整个 Transformer 架构用到哪些模块,再把整个 Transformer 拼接起来。同时,图中的位置编码、矩形 和 Nx又是什么?这些模块又如何搭建起来呢?当真的有一个任务,又如何使用和完成的?例如在翻译任务中 Transformer 是如何完成的?
2024-04-27 20:26:40
2534
原创 Pascal VOC(VOC 2012、VOC 2007) 数据集的简介
PascalVOC(2005~2012)数据集是PASCAL VOC挑战官方使用的数据集。该数据集包含20类的物体。每张图片都有标注,标注的物体包括人、动物(如猫、狗、岛等)、交通工具(如车、船飞机等)、家具(如椅子、桌子、沙发等)在内的20个类别。每个图像平均有2.4个目标,所有的标注图片都有目标检测需要的标签。VOC2007 与 VOC2012VOC2007:包含9963张标注过的图片, 由train/val/test三部分组成, 共标注出24,640个物体。
2024-04-17 20:28:56
3961
原创 经典目标检测YOLOV1理论基础的编码实现(通过编码理解原理)
首先了解数据集,对数据集了解后方便对数据进行相应处理。定义编码器主要目的是用于将边界框(归一化后的边界框信息)和标签编码为目标张量。在utils目录下创建工具类 yolo_dataset.py,中定义主函数进行测试,包含设置和加载一个自定义的Yolo_Dataset数据集,该数据集来源于VOC2012的JPEGImages文件夹。代码中首先导入了必要的模块和类,然后定义了数据集的根目录和预处理操作。接着,创建了一个Yolo_Dataset对象,并通过DataLoader类将其加载为可迭代的数据集。
2024-04-17 18:49:34
452
原创 【目标检测】YOLO系列-YOLOv1 理论基础 通俗易懂
为方便大家理解YOLO的原理,这里将YOLOv1的部分内容基础内容进行用比较直白的话和例子进行阐述,为后续大家学习YOLO作为铺垫。1、模型所干的活工作中,大家经常将 Word 文档 上传到某转换器,然后转换输出为PDF文档。目标检测中我们想做的事也类似,就是输入一张图,输出一张带有框(标注对应的物体)的图片。如下图所示:问题:这个框是如何还出来的呢?通过模型画出来的,这模型就相当于 word到pdf的转换器。如下图:进一步理解,需要不断调试,不断计算损失,看看在哪个位置画框最合适。
2024-04-17 12:02:43
952
原创 机器学习-关联规则算法Apriori及编码实现
lift(X→Y)=confidence(X→Y)/P(Y),表示含有X的条件下,同时含有Y的概率,与Y总体发生的概率之比。confidence(X→Y)=|X交Y|/|X|,集合X与集合Y同时出现的总次数/集合X出现的记录数。support(X→Y)=|X交Y|/N,表示物品集X和Y同时出现的次数占总记录数的比例。-- TID是交易编号,表示一次购物交易的唯一标识,即用户购买的一次记录。项集:项的集合,包含k个项的项集称为k项集,例如上面。中的占比,例如 A表示手机,B表示手表,手机和手表。
2024-03-31 15:46:27
568
原创 Linux虚拟机环境搭建spark
Linux环境搭建Spark分为两个版本,分别是Scala版本和Python版本。本环境以 Python 环境为例。
2024-03-27 13:37:21
1719
原创 虚拟机Linux(centos)安装python3.8(超详细)
输入下面网址即可直接下载:补充:本环境选择版本是3.8版本,最好以root身份登录,避免不必要的麻烦。
2024-03-27 10:49:06
13517
2
原创 协同过滤前置条件
集体智慧是一种共享或群体的智能,它通过结合多个人的知识、数据、技能和智力,协同解决社会问题。在移动互联网时代,集体智慧在Web应用中发挥着重要作用,表现为群体决策、众包、在线知识社区等多种形式。集体智慧的特征在于一致和协调的集体思考,对问题的集体解决能力,以及通过共享知识和资源优化决策。其应用广泛,包括谷歌搜索算法、社交网络服务、众包等领域,共同构建和优化用户体验。
2024-03-23 23:57:50
265
原创 常用相似度计算方法总总结
相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。0.0-0.2 极弱相关或无相关。相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度。相关系数 0.8-1.0 极强相关。(1)、当相关系数为0时,X和Y两变量无关系。
2024-03-23 22:36:55
2108
原创 机器学习K-means算法
其次我们要先确定红豆、绿豆、黑米、大米、花生、莲子、花豆各自的中心点,以各自的中心点进行抓取,这样分堆对快。例如下图中,红色中心点是大米区域的中心点,以这个为中心,距离这个中心点近的大米比较多。你的回答会慢一些,因为你会看一下,想一会再分一下类(红豆、绿豆、黑米、大米、花生、莲子、花豆)最后再回答。那么问题来了,让你将图2 中的五谷杂粮像图1中一样分好堆,需要分几堆呢?给你如下两种图片,快读回答2个问题,问 图1 中有几类五谷杂粮?问题2 回答慢的原因是 图中未进行分类,需要自己进行分类。
2024-03-23 17:36:49
764
原创 HarmonyOS系统开发ArkTS常用组件弹窗及参数(十)
弹窗是移动应用中常见的一种用户界面元素,常用于显示一些重要的信息、提示用户进行操作或收集用户输入。ArkTS提供了多种内置的弹窗供开发者使用,除此之外还支持自定义弹窗,来满足各种不同的需求。
2024-03-20 12:04:51
4376
原创 HarmonyOS系统开发ArkTS常用组件切换按钮及参数(七)
Toggle组件的参数:Toggle(options: { type: ToggleType, isOn?: boolean })Toggle为切换按钮组件,一般用于两种状态之间的切换,例如下图中的蓝牙开关。
2024-03-20 10:17:08
657
原创 HarmonyOS系统开发ArkTS常用组件按钮及参数(六)
Button组件有两种使用方式,分别是不包含子组件和包含子组件两种方式。不同方式Button 组件所需的参数有所不同。: { type?ButtonType.Capsule 胶囊形状ButtonType.Circle 圆形ButtonType.Normal 普通形状。
2024-03-20 10:05:31
1393
原创 HarmonyOS系统开发ArkTS常用组件文本及参数(五)
鸿蒙中的文本组件是Text,其中的文字内容可是直接写死在代码中,也可是编辑到resources目录下下的不用环境的配置文件中,如base、en_Us、zh_Us目录下的element中的 String.json文件。
2024-03-19 23:22:24
1222
原创 自然语言处理学习总结
存在问题:词的表示有时候有差异,如果apple表示水果,但也表示苹果公司。同时受限于词典的标注和范围及人工问题。词义的表示方法:近义词、反义词或隶属与的上位词等相关的词放到一起,表示这个词的词义。词表示:自然语言中最基本的语言单位表示成机器理解的方式。新的词义的表示方法是:one-hot编码,即向量。方式一:词与词之间的相似度。方式二:词与词之间的关系。
2024-03-18 23:13:46
1227
原创 HarmonyOS系统开发ArkTS常用组件图片及参数(四)
我们在使用resources下的资源时,无需指定具体的环境版本,系统会根据设备所处的环境自动选择匹配的版本,例如当设备系统语言为中文时,则会使用zh_CN目录下的资源,为英文时,则会使用en_US目录下的资源。resources 目录下,可能存在base、(zh_CN和en_US)、系统主题(dark和light)、设备类型(phone 和 tablet)和 rawfile 等适配不同的环境的不同版本的目录。用于存储任意格式的原始文件,需要注意的是rawfile不会根据设备所处的环境去匹配不同的资源。
2024-03-18 13:56:16
1240
原创 HarmonyOS系统开发ArkTS入门案例及组件(三)
提高代码复用性@Component 装饰器:装饰 struct 关键字声明的数据结构@Entry 装饰器:标识该组件为组件树的根节点,也就是一个页面入口组件struct:ArkTS用于自定义组件或者自定义定义弹窗的关键字,与结构类相似build() build() 用于声明自定义组件的UI结构组件属性:定义组件的属性。
2024-03-18 13:35:20
1996
原创 HarmonyOS系统开发基础环境搭建(一)
1.2 HarmonyOS软件编程语言是ArkTS,是基于TypeScript的拓展,而TypeScript又是JavaScript的拓展,所以有过JavaScript经验会更容易些。1.1 HarmonyOS是华为自研的一款分布式操作系统,兼容Android,但又区别Android,不仅仅定位于手机系统。更侧重于万物物联和智能终端,目前已更新到4.0版本。安装目录可以默认安装,本文章采用自定义安装目录。2.4 下载DevEco Studio。2.3 创建安装目录。
2024-03-10 09:20:06
1508
原创 Flink 环境的搭建、独立集群、Flink on Yarn、访问Flink web界面、Flink提交任务的三种方式、Flink读取HDFS上的数据Flink 运行方式
Flink:框架和(分布式)引擎,对(有界和无界)数据流进行有状态(即存储中间结果)计算。有定义的开始,没有结束,必须持续处理,即摄取到数据立即处理有定义的开始,也有结束,摄取到所有数据后再计算,可以被排序,即无需有序摄取,通常称为批处理。内存:速度快,可靠性差分布式系统:速度慢,可靠性强DataStream 批流统一处理DataStream 批流统一处理,数据流的统一处理接口。批处理,是将其数据当作有界(有定义开始,有定义结束)流处理,例如文本文件数据。
2024-02-18 14:45:12
1790
原创 03 软件工程项目开发流程-头脑风暴
在软件项目开发过程中,利用头脑风暴法识别项目风险时,要将项目主要参与人员代表召集到一起,然后他们利用自己对项目不同部分的认识,识别项目可能出现的问题。一个有益的做法是询问不同人员所担心的内容。在软件项目开发过程中,头脑风暴的主要作用是充分发挥集体智慧,保证群体决策的创造性,提高决策质量。头脑风暴可以在需求调研时进行,可以在需求调研之后进行,也可以在需求调研报告编写之后进行。
2024-01-19 17:57:56
544
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人