manacher算法(寻找最长回文)

博客介绍了Manacher算法解决寻找最长回文子串问题的思路,通过利用回文串的对称性质,将时间复杂度优化至Θ(n),详细阐述了算法的实现过程和不同情况的处理策略,并提到了处理偶数长度回文串中心的方法。
摘要由CSDN通过智能技术生成

考虑这样的一个最长回文子串问题:

  • 给定一个长度为 n 的字符串 S
  • 现在要从中找出一个回文的子串 T
  • 字符串 A 是回文的,当且仅当 A 反转后的 A A 完全相等。
  • T 可能的最大长度。

容易想到直观的暴力算法,枚举所有的子串并逐一判断,时间复杂度为 Θ(n3)

但可以注意到,回文串必然有一个“中心”,且整个串是关于这个中心左右对称的,因此一个长度大于2的回文串中必有一个更短的回文串,例如当 S1..5 是回文串时, S2..4 也一定是回文串。

抓住这一性质后我们就可以枚举回文串的中心,不断比较左边和右边的字符是否相等,时间复杂度为 Θ(n2)

这种做法挖掘出了一个非常重要的性质,并以此进行了优化。但是还可以做的更好!

如果我们充分利用回文字符串的性质(左右对称),还可以通过左边的对称中心的答案直接获得对称的右边的对称中心的答案

不妨通过一个例子来详细说明。

i<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值