有一个巨大的 K 叉树,从上到下,从左到右编了 N 个号,这 N 个点就是一个 K叉完全树。例如 K=3,N=9:

你需要回答 Q 个问题:从 x 节点到 y 节点最少要经过几条边?
【输入格式】
第 1 行输入整数 N (1 ≤ N ≤ 10^15(表示有 15 个 0)) , K (1 ≤K ≤ 1,000) ,Q(1 ≤ Q ≤ 100,000) 。
下面 Q 行,每行两个整数 x 和 y(L ≤ x,y ≤ N , x≠y) 。
【输出格式】
共 Q 行,每行是对应的询问的答案。
【输入输出样例】
输入
7 2 3
1 2
2 1
4 7
9 3 3
8 9
5 7
8 4
输出
1
1
4
2
2
3
【数据范围】
20%数据 1 ≤ N,Q ≤ 1000.
50%数据 1 ≤ N,Q ≤ 100000.
======================================
这题是八题里面相当水的送分题。。毕竟直接求LCA并记录边数就可以了。
而且数据范围也很小。所以我写得比较随意,并没有用正规的LCA。。。。
以下是本人程序
#include<algorithm>
#include<cstdio>
int len;
long long int N,K,Q,tree[50];//tree[i]记录第i层最右边的结点编号
inline long long int abs(long long int a){return a<0?-a:a;}//求绝对值
void move(long long int&);//将节点移到它的父亲
int main(){
freopen("ktree.in","r",stdin);
freopen("ktree.out","w",stdout);
scanf("%I64d%I64d%I64d",&N,&K,&Q);
if(K!=1){//k=1的情况单独处理
tree[1]=1; long long int temp=1;//temp表示该层节点数量
for(len=2;tree[len-1]<=N;++len){temp*=K;tree[len]=tree[len-1]+temp;}
}
for(int i=0;i!=Q;++i){
long long int x,y;
scanf("%I64d%I64d",&x,&y);
if(K==1){printf("%I64d\n",abs(x-y));continue;}//k=1时直接相减
int ans=0;//记录步数
while(x!=y){
move(x>y?x:y);//每次将较下的节点往上移
++ans;
}
printf("%d\n",ans);
}
return 0;
}
void move(long long int &pos){
int i=std::lower_bound(tree,tree+len,pos)-tree;//二分求所在层
pos=tree[i-2]+(pos-tree[i-1]-1)/K+1;//较笨的求父亲方法
}