详解数据挖掘与机器学习的区别与联系

原创 2017年07月16日 16:50:31

0、为什么写这篇博文

  最近有很多刚入门AI领域的小伙伴问我:数据挖掘与机器学习之间的区别与联系。为了不每次都给他们长篇大论的解释,故此在网上整理了一些资料,整理成此篇文章,下次谁问我直接就给他发个链接就好了。

  本篇文章主要阐述我个人在数据挖掘、机器学习等方面的学习心得,并搜集了网上的一些权威解释,或许不太全面,但应该会对绝大多数入门者有一个直观地解释。

  本文主要参照周志华老师的:机器学习与数据挖掘 一文。有兴趣的可以自行百度,其文对人工智能、数据挖掘、机器学习等演变历程,有详细介绍。

1、概念定义

首先,第一步,我们对机器学习和数据挖掘的定义做一下总结,看看大家有没有一点体会:

  机器学习:广泛的定义为 “利用经验来改善计算机系统的自身性能。”,事实上,由于“经验”在计算机系统中主要是以数据的形式存在的,因此机器学习需要设法对数据进行分析,这就使得它逐渐成为智能数据分析技术的创新源之一,并且为此而受到越来越多的关注。

  数据挖掘:一种解释是“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程”,顾名思义,数据挖掘就是试图从海量数据中找出有用的知识。

2、关系与区别

2.1 关系

   数据挖掘可以认为是数据库技术与机器学习的交叉,它利用数据库技术来管理海量的数据,并利用机器学习和统计分析来进行数据分析。其关系如下图:

这里写图片描述

  数据挖掘受到了很多学科领域的影响,其中数据库、机器学习、统计学无疑影响最大。粗糙地说,数据库提供数据管理技术,机器学习和统计学提供数据分析技术。由于统计学界往往醉心于理论的优美而忽视实际的效用,因此,统计学界提供的很多技术通常都要在机器学习界进一步研究,变成有效的机器学习算法之后才能再进入数据挖掘领域。从这个意义上说,统计学主要是通过机器学习来对数据挖掘发挥影响,而机器学习和数据库则是数据挖掘的两大支撑技术。

2.2 区别

   数据挖掘并非只是机器学习在工业上的简单应用,他们之间至少包含如下两点重要区别:

  1. 传统的机器学习研究并不把海量数据作为处理对象,因此,数据挖掘必须对这些技术和算法进行专门的、不简单的改造。

  2. 作为一个独立的学科,数据挖掘也有其独特的东西,即:关联分析。简单地说,关联分析就是希望从数据中找出“买尿布的人很可能会买啤酒”这样看起来匪夷所思但可能很有意义的模式。



对机器学习,人工智能感兴趣的小伙伴,请关注我的公众号:

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

机器学习该如何入门

引言  可能你对这个名字叫“机器学习”的家伙不是特别的了解,但是相信用过iPhone的同学都知道iPhone的语音助手Siri,它能帮你打电话,查看天气等等;相信大家尤其是美女童鞋都用过美颜相机,它能...

Scikit-learn实战之SVM分类

Support vector machines (SVMs) 是一系列的有监督的学习方法,主要用于分类、回归和异常点检测。1. SVM的主要优点如下: 在高维空间有效; 当样本空间的维度比样本数高时任...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

超限学习机(ELM)

ELM(Exteme learning machine,超限学习机),由新加坡南洋理工大学的Guangbin Huang(黄光斌)副教授提出的。

Win10 64bit下安装GPU版Tensorflow+Keras

Tensorflow和Keras都是支持Python接口的,所以本文中说的都是搭建一个Python的深度学习环境。        Keras是对Tensorflow或者Theano的再次封装,也就是以...

ELM(Extreme Learning Machine):超限学习机

定义极限学习机器( Extreme Learning Machine,ELM) 是神经网络研究中的一种算法,是一种泛化的单隐层前馈神经网络( Single-hidden Layer Feed forw...

超限学习机--ELN 读书笔记一

G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, “Extreme Learning Machine: Theory and Applications”, Neurocom...

核方法(Kernel Mehthod)

1、核技巧(Kernel Trick)2、核函数(Kernel Function)
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)