卷积特征提取—处理大型图像

本文探讨了在处理大型图像时如何利用卷积特征提取。通过将图像分块并应用训练好的网络,得到大量的特征矩阵。由于矩阵过大,不适合直接用于分类,文章提到了自然图像的静态特性,即不同部分的统计特性相同,这为卷积提供了理论基础。此外,介绍了卷积操作的本质,以及在MATLAB中如何进行卷积运算。最后,文章指出池化(mean pooling或max pooling)是降低特征维度的有效方法,但其理论依据仍然需要深入理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网址;http://deeplearning.stanford.edu/wiki/index.php/UFLDL教程

     仿真表明,如果将整幅图像运用imresize函数进行压缩,则训练样本过少。如果采用图像分块的方式,获取了大量的样本,并且确定了网络参数。那接下来如何运用这个参数去提取整幅图像的特征呢?

     教程中举了一个例子。96*96的图像,假设训练时采用的8*8的patch,且隐含层节点100个。(我突然想到,关于稀疏自编码的栈式编码方式我貌似没有理解,以前的理解是错误的)。按教程中的方式来看,96*96的图像将会被分成(96-8+1)*(96-8+1),即89*89块,每一块的大小是8*8。将这些分出来的块输入到已经训练好的网路中,输入是:64*(89*89),W1是100*64,W1*输入,则隐含层的输出是100*(89*89),这也是教程中所说的将得到100个集合,每个集合中含有89*89特征的含义所在。

      这样问题有来了,每一幅图像都得到100*(89*89)的特征矩阵,这个太大了,如果用这个去训练分类器显然是不可能的。那我们怎么办呢?未完待续。。。

在这里插一段图像的静态特性。

       教程中说,自然图像具有静态特性,即图像某一部分的统计特性和其他部分是相同的,这是用某一部分学习出的特征(即权值)去卷积整幅图像,对整幅图像进行特征表示的理论基础。所以特地查了下到底什么是图像的统计特性。看了一些PPT,图像的统计特性是指图像信号(亮度、色度或其抽样值)本身或对他们进行某种方式处理(比如计算像素的均值,中值,方差等等)以后的输出值的随机统计特性。看了一篇英文文章:

Torralba A, Oliva A. Statistics of natural image categories[J]. Network: computation in neural systems, 2003, 14(3): 391-412.

       该文章探讨了自然图像的统计特性,并使用这些统计特性对目标和场景进行分类。讨论了二阶统计特性(second-order statistics)与图像类别,场景规模和目标的相关关系。We propose how scene categorization(场景分类) could be computed in a feedforward manner in order to provide top-down(自顶向下)  and contextual(上下文信息) information very early in the visual processing chain(视觉处理链)。实验表明low-level features is benefit to 识别问题。同时,提出简单的统计特性可以用来预测图像中是否

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值