生活因AR而改变

娱乐与信息推送相结合

  App Store上曾有一个“扑蝴蝶”的应用,通过使用AR技术、运动传感器和GPS功能,实现用你的手机捕捉虚拟蝴蝶。用户将手机摄像头对准周边环境搜索,发现蝴蝶后,手腕轻轻一扣,就可以捕捉蝴蝶。栩栩如生的蝴蝶出现在各种场景中,让人忍不住追随它。

   休闲旅游应用

  香港旅游发展局曾推出一款带有增强现实功能的智能手机旅游应用,用手机的摄像头扫描身处位置的周围,应用程序就会通过识别摄像头上拍到的内容显示附近的主要景点,以及“优质旅游服务”计划里的商铺和获奖餐厅等信息,旅客可在屏幕中点选这些景点、商铺及餐厅,获取详尽的相关资料。

     提升购物体验

  选购家具的时候,你是否担心买回家摆放效果不好呢?AR技术可以完美解决这个难题,通过手机客户端,家居卖场现在尝试允许用户用智能手机把虚拟家具投射到他们的客厅里。

  为达到最佳效果,用户需一本年度产品画册来配合App的工作,除了直接在页面上扫描支持此功能的家具然后进行预览之外,用户还能以画册作为锚点来预览家具的现实效果。为了得到合理的尺寸,最好在画面中放置一个物体供 App 作为参考。今后只要把产品画册带回家,就可以像换衣服一样地“试摆”家具了。

  专家:AR技术潜力大

  暨南大学AR增强现实应用研究中心的负责人李苗教授认为,AR技术会是未来企业推广宣传的主要手段之一。“相对于二维码,AR技术呈现的形式更丰富,信息量也更大。”虽然目前还没广泛应用,但随着4G时代到来,AR将会有大发展,无论是商务应用、休闲娱乐还是提升购物体验,AR都能让人“身临其境”,切实感受到生活的无限可能。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值