kaggel入门比赛_HousePrices

本文介绍了作者在kaggle HousePrices比赛中进行数据预处理和建模的初体验,主要包括数据变换、缺失值填补和维度规约。作者探讨了categorical特征处理、log变换对模型的影响,并分享了在特征选择和模型调参中遇到的挑战和思考。
摘要由CSDN通过智能技术生成

@update 2016.11.28,自己尝试了一些缺失值填补的方法,调sklearn写了一些特征变换和特征选择的算法

下一步:继续特征规约,开始模型调参

kaggle入门系列比赛HousePrices,该比赛是一个经典的回归问题,预测房价,这个比赛我用来熟悉kaggle,熟悉基本的数据挖掘流程,主要是特征工程,包括常见的缺失值填补,categorial特征的处理,其实主要就是熟悉用python的pandas包对数据进行预处理。

第一次尝试的过程我主要是参考了Regularized Linear Models这篇kernel,它对数据的处理就是一些最基本的做法,作为入门、熟悉基本流程是很好的一篇kernel。

一.处理数据,准备建模

1.数据变换

特征中的属性分为两种,定性的和定量的。对定量的属性我们可以有很多种距离度量方式。而对定性的属性我们一般用标签来表示之,这对于常见的机器学习算法而言是不好处理的,常见的做法是转化为数值属性,但是如何转化?如何单纯的转化为数字的话会影响一些以距离度量为依据的算法的准确性。一般我们使用pandas的get_dummies()将其每个属性值转化为一个二元属性维度,值对应为0/1,但这也存在一个问题,就是当原始定性属性的属性值过多时。
all_data = pd.get_dummies(all_data) #直接对整个DataFrame中所有类别属性做dummies
对于定量属性,一个可能需要的操作就是规范化。但规范化不是必须的,当所使用的算法不是依据距离属性作为度量时,不需要做归一化。
在上述提到的 Regularized Linear Models的做法中,值得一提的是通过对数据的绘图(也可以通过scipy包的)发现预测属性是 偏态分布的。这种偏态分布(数据不均衡)会影响算法准确性,作者通过对偏态数据做log变换改善数据倾斜度。
skewed_feats = train[numeric_feats].apply(lambda x: skew(x.dropna())) #compute skewness<pre name="code" class="python">all_data[sk
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值