python:倒排索引,单词查询

转载 2015年11月18日 18:54:58
import unicodedata
_WORD_MIN_LENGTH = 3
_STOP_WORDS = frozenset([
'a', 'about', 'above', 'above', 'across', 'after', 'afterwards', 'again', 
'against', 'all', 'almost', 'alone', 'along', 'already', 'also','although',
'always','am','among', 'amongst', 'amoungst', 'amount',  'an', 'and', 'another',
'any','anyhow','anyone','anything','anyway', 'anywhere', 'are', 'around', 'as',
'at', 'back','be','became', 'because','become','becomes', 'becoming', 'been', 
'before', 'beforehand', 'behind', 'being', 'below', 'beside', 'besides', 
'between', 'beyond', 'bill', 'both', 'bottom','but', 'by', 'call', 'can', 
'cannot', 'cant', 'co', 'con', 'could', 'couldnt', 'cry', 'de', 'describe', 
'detail', 'do', 'done', 'down', 'due', 'during', 'each', 'eg', 'eight', 
'either', 'eleven','else', 'elsewhere', 'empty', 'enough', 'etc', 'even', 
'ever', 'every', 'everyone', 'everything', 'everywhere', 'except', 'few', 
'fifteen', 'fify', 'fill', 'find', 'fire', 'first', 'five', 'for', 'former', 
'formerly', 'forty', 'found', 'four', 'from', 'front', 'full', 'further', 'get',
'give', 'go', 'had', 'has', 'hasnt', 'have', 'he', 'hence', 'her', 'here', 
'hereafter', 'hereby', 'herein', 'hereupon', 'hers', 'herself', 'him', 
'himself', 'his', 'how', 'however', 'hundred', 'ie', 'if', 'in', 'inc', 
'indeed', 'interest', 'into', 'is', 'it', 'its', 'itself', 'keep', 'last', 
'latter', 'latterly', 'least', 'less', 'ltd', 'made', 'many', 'may', 'me', 
'meanwhile', 'might', 'mill', 'mine', 'more', 'moreover', 'most', 'mostly', 
'move', 'much', 'must', 'my', 'myself', 'name', 'namely', 'neither', 'never', 
'nevertheless', 'next', 'nine', 'no', 'nobody', 'none', 'noone', 'nor', 'not', 
'nothing', 'now', 'nowhere', 'of', 'off', 'often', 'on', 'once', 'one', 'only',
'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours', 'ourselves', 'out',
'over', 'own','part', 'per', 'perhaps', 'please', 'put', 'rather', 're', 'same',
'see', 'seem', 'seemed', 'seeming', 'seems', 'serious', 'several', 'she', 
'should', 'show', 'side', 'since', 'sincere', 'six', 'sixty', 'so', 'some', 
'somehow', 'someone', 'something', 'sometime', 'sometimes', 'somewhere', 
'still', 'such', 'system', 'take', 'ten', 'than', 'that', 'the', 'their', 
'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby', 
'therefore', 'therein', 'thereupon', 'these', 'they', 'thickv', 'thin', 'third',
'this', 'those', 'though', 'three', 'through', 'throughout', 'thru', 'thus', 
'to', 'together', 'too', 'top', 'toward', 'towards', 'twelve', 'twenty', 'two', 
'un', 'under', 'until', 'up', 'upon', 'us', 'very', 'via', 'was', 'we', 'well', 
'were', 'what', 'whatever', 'when', 'whence', 'whenever', 'where', 'whereafter',
'whereas', 'whereby', 'wherein', 'whereupon', 'wherever', 'whether', 'which', 
'while', 'whither', 'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'will', 
'with', 'within', 'without', 'would', 'yet', 'you', 'your', 'yours', 'yourself',
'yourselves', 'the'])

def word_split(text):
    """
    Split a text in words. Returns a list of tuple that contains
    (word, location) location is the starting byte position of the word.
    """
    word_list = []
    wcurrent = []
    windex = None

    for i, c in enumerate(text):
        if c.isalnum():
            wcurrent.append(c)
            windex = i
        elif wcurrent:
            word = u''.join(wcurrent)
            word_list.append((windex - len(word) + 1, word))
            wcurrent = []

    if wcurrent:
        word = u''.join(wcurrent)
        word_list.append((windex - len(word) + 1, word))

    return word_list

def words_cleanup(words):
    """
    Remove words with length less then a minimum and stopwords.
    """
    cleaned_words = []
    for index, word in words:
        if len(word) < _WORD_MIN_LENGTH or word in _STOP_WORDS:
            continue
        cleaned_words.append((index, word))
    return cleaned_words

def words_normalize(words):
    """
    Do a normalization precess on words. In this case is just a tolower(),
    but you can add accents stripping, convert to singular and so on...
    """
    normalized_words = []
    for index, word in words:
        wnormalized = word.lower()
        normalized_words.append((index, wnormalized))
    return normalized_words

def word_index(text):
    """
    Just a helper method to process a text.
    It calls word split, normalize and cleanup.
    """
    words = word_split(text)
    words = words_normalize(words)
    words = words_cleanup(words)
    return words

def inverted_index(text):
    """
    Create an Inverted-Index of the specified text document.
        {word:[locations]}
    """
    inverted = {}

    for index, word in word_index(text):
        locations = inverted.setdefault(word, [])
        locations.append(index)

    return inverted

def inverted_index_add(inverted, doc_id, doc_index):
    """
    Add Invertd-Index doc_index of the document doc_id to the 
    Multi-Document Inverted-Index (inverted), 
    using doc_id as document identifier.
        {word:{doc_id:[locations]}}
    """
    for word, locations in doc_index.iteritems():
        indices = inverted.setdefault(word, {})
        indices[doc_id] = locations
    return inverted

def search(inverted, query):
    """
    Returns a set of documents id that contains all the words in your query.
    """
    words = [word for _, word in word_index(query) if word in inverted]
    results = [set(inverted[word].keys()) for word in words]
    return reduce(lambda x, y: x & y, results) if results else []

if __name__ == '__main__':
    doc1 = """
Niners head coach Mike Singletary will let Alex Smith remain his starting 
quarterback, but his vote of confidence is anything but a long-term mandate.
Smith now will work on a week-to-week basis, because Singletary has voided 
his year-long lease on the job.
"I think from this point on, you have to do what's best for the football team,"
Singletary said Monday, one day after threatening to bench Smith during a 
27-24 loss to the visiting Eagles.
"""

    doc2 = """
The fifth edition of West Coast Green, a conference focusing on "green" home 
innovations and products, rolled into San Francisco's Fort Mason last week 
intent, per usual, on making our living spaces more environmentally friendly 
- one used-tire house at a time.
To that end, there were presentations on topics such as water efficiency and 
the burgeoning future of Net Zero-rated buildings that consume no energy and 
produce no carbon emissions.
"""

    # Build Inverted-Index for documents
    inverted = {}
    documents = {'doc1':doc1, 'doc2':doc2}
    for doc_id, text in documents.iteritems():
        doc_index = inverted_index(text)
        inverted_index_add(inverted, doc_id, doc_index)

    # Print Inverted-Index
    for word, doc_locations in inverted.iteritems():
        print word, doc_locations

    # Search something and print results
    queries = ['Week', 'Niners week', 'West-coast Week']
    for query in queries:
        result_docs = search(inverted, query)
        print "Search for '%s': %r" % (query, result_docs)
        for _, word in word_index(query):
            def extract_text(doc, index): 
                return documents[doc][index:index+20].replace('\n', ' ')

            for doc in result_docs:
                for index in inverted[word][doc]:
                    print '   - %s...' % extract_text(doc, index)
        print

相关文章推荐

IR中python 写倒排索引与查询处理

学习信息检索课程,老师让写一个倒排索引与查询处理的程序,于是抱着试试的心态自学python写了出来。 整个没有什么太大的算法技巧,唯一的就是查询处理那里递归函数正反两次反复查找需要多调试下。 数据...

Python 倒排索引

倒排索引 倒排索引(Inverted index),也常被称为反向索引,是一种索引方法,用来存储某个单词存在于哪些文档之中。是信息检索系统中最常用的数据结构。通过倒排索引,可以根据单词快速获取包含这...

python倒排索引

一. 实验目的1.掌握列表、集合和字典的定义、赋值、使用等基本操作,熟悉处理复杂数据类型的一般流程 2.熟悉列表、集合和字典的常用函数和技巧 3.考察对文本的灵活处理和对排序算法的运用二. 实验内...

【Python】倒排索引

预处理word stemming一个单词可能不同的形式,在英语中比如动词的主被动、单复数等。比如live\lives\lived. 虽然英文的处理看起来已经很复杂啦但实际在中文里的处理要更加复杂的多...

一个倒排索引(inverted index)的python实现

一个倒排索引(inverted index)的python实现 使用spider.py抓取了10篇中英双语安徒生童话并存在”documents_cn”目录下 使用inverted_index_cn.p...

Python:将句子中的单词全部倒排过来,但单词的字母顺序不变

早上看到好友未央的一篇博文《一道google的测试工程师笔试题》,内容如下: 这是去年面试google测试工程师的一道题,题目如下: 设计一个函数,使用任意语言,完成以下功能: 一个句子,将句子...

倒排索引及布尔查询的处理算法

1 词项-文档关联矩阵: 在构建倒排索引之前,一个在大规模文档集中进行查找的方法是建立词项-文档关联矩阵,行为每个词项对应的文档向量,而列为每个文档对应的此项向量。根据布尔检索式,进行向量间的位运算(...

POJ 4093 倒排索引查询(STL set 的应用)

这个主要就是一个集合的交-差问题.由于数据量比较大,考虑用 STL 里面的SET 来当数据结构,存储每个单词出现的文档编号.我的思路是,找到一个为 1 的单词的下标,把这个单词的文档编号输出到 res...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)