人脸检测——矫正人脸生成标签


直接代码:

import glob
import random

size_list = (12, 24, 48)

for size in size_list:
    lines = []
    for i in range(45):

        dir_path = 'data_prepare/cal_positive_' + str(i+1) + '_' + str(size) + '/*.jpg'

        filenames = glob.glob(dir_path)

        filelist = map(lambda x:x+' '+str(i)+'\n', filenames)
        lines = lines+filelist

    random.shuffle(lines)
    savename = 'cal_' + str(size) + '_list.txt'
    with open(savename,'w') as f:
        f.writelines(lines)




如果帮到你了,请赞赏支持:


### 人脸认证技术概述 人脸认证是一种基于生物特征的身份验证方式,其核心在于利用计算机视觉和机器学习算法来识别人类面部的独特特征并将其用于身份确认。现代的人脸识别系统通常依赖于深度学习模型,尤其是卷积神经网络(CNN),这些模型能够高效提取复杂的面部特征[^1]。 #### 数据预处理 在实现人脸认证之前,数据的准备至关重要。这一步骤涉及图像采集、清洗以及标准化操作。常见的预处理步骤包括但不限于: - **光照校正**:调整图片亮度以减少环境光的影响。 - **姿态矫正**:通过对齐眼睛或其他关键点使脸部处于标准位置。 - **尺寸缩放**:统一输入到模型中的图像大小以便后续计算。 #### 特征提取与匹配 一旦完成了初步的数据准备工作之后,则进入到最关键的阶段——特征提取与相似度比较环节: - 使用预先训练好的深度学习框架或者开源工具包来进行高效的特征向量抽取工作;例如FaceNet就是一个非常著名的例子它能将每张面孔映射成一个固定长度的空间向量表示形式从而简化了后期的距离测量过程 . - 对于实际应用而言, 可以选择两种不同策略完成最终判定: - 如果存在已知用户的ID列表及其对应注册照片集合时可以先构建索引来加速查询速度. - 当然也可以单纯依靠上传的新鲜样本直接同整个数据库做全面扫描找出最接近的那个候选者作为结果返回给调用方. 以下是Python环境下简单演示如何加载MTCNN检测器定位面部区域再借助Facenet生成嵌入式编码片段: ```python from mtcnn import MTCNN import cv2 import numpy as np from keras.models import load_model def extract_face(image_path): detector = MTCNN() image = cv2.imread(image_path) result = detector.detect_faces(image) if not result: return None bounding_box = result[0]['box'] face = image[bounding_box[1]:bounding_box[1]+bounding_box[3], bounding_box[0]:bounding_box[0]+bounding_box[2]] return cv2.resize(face,(160,160)) model = load_model('facenet_keras.h5') face_array = extract_face("test.jpg") if face_array is not None: normalized = (face_array - 127.5) / 128 embedding = model.predict(np.expand_dims(normalized,axis=0)) print(embedding.shape) ``` 上述脚本展示了从一张测试图象中裁剪出目标人物头像继而转换为其低维表征的具体流程. ### 安全考量及其他注意事项 尽管自动化程度高且用户体验友好但仍然需要注意保护个人隐私信息安全等问题因此建议采取加密传输存储敏感资料并且定期更新维护相关软硬件设施确保整体解决方案稳健可靠长久有效运行下去.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值