简单的人脸跟踪


选用的人脸检测器:NPD Face Detector

单人脸的简单跟踪MATLAB代码。

close all; clear; clc;
mov = VideoReader('test.mov');
modelFile = 'model_frontal.mat'
load(modelFile, 'npdModel')

%原图中检测到的人脸位置
cddBoxX=0;
cddBoxY=0;
cddBoxW=0;
cddBoxH=0;
%在检测人脸时,为下一次检测产生的候选框。
rectX=0;
rectY=0;
rectW=0;
rectH=0;
%检测到的人脸总数
numFaces=0;
%总的检测时间
timeSum=0;
%总共检测的帧数
frameN=0;

for i=1:mov.NumberOfFrames
    img = read(mov, i);
    img = imresize(img,[640, 480]);
    imgCpy = img;
    if(i~=1 && numFaces>0)
        %候选框的生成
	rectX = cddBoxX*0.6;
	rectY = cddBoxY*0.6;
	rectW = cddBoxW*2.5;
	rectH = cddBoxH*2.5;
	%在原图中抠出候选框
	img = imcrop(imgCpy, [rectX ,rectY ,rectW ,rectH]);
    end

    if(numFaces == 0)
	img = imgCpy;
    end
    
    t1 = clock;
    %人脸检测
    rects = DetectFace(npdModel,img);
    t2 = clock;
    timeDet = etime(t2,t1);
    timeSum = timeSum + timeDet;
    frameN = frameN+1;
    fprintf('detect time is: %f\n', timeDet);
    numFaces = length(rects);
    fprintf('%d faces detected.\n', numFaces);


    %判断是在原图上检测的人脸,还是在候选框中检测的人脸,两者的显示是不同的。
    if numFaces > 0
        border = round(size(img,2) / 300);
        if border < 2, border = 2; end

	%注意这是一个单人脸检测的版本。
	maxBox=0;
	for j=1:numFaces
	    areas = rects[j].width * rects[j].height;
	    if(areas>maxBox)
		index = j;
            end
	end
	cddBoxX = rects(index).col;
	cddBoxY = rects(index).row;
	cddBoxW = rects(index).width;
	cddBoxH = rects(index).height;
	
        imgCpy = DrawRectangle(imgCpy, int16(rectX+cddBoxX), int16(rectY+cddBoxY), cddBoxW , cddBoxH , [0 255 0], border);
        cddBoxX = rectX+cddBoxX;
	cddBoxY = rectY+cddBoxY;
	cddBoxW = cddBoxW;
	cddBoxH = cddBoxH;
    end

    if numFaces > 0
        border = round(size(img,2) / 300);
        if border < 2, border = 2; end

	maxBox=0;
	for j=1:numFaces
	    areas = rects[j].width * rects[j].height;
	    if(areas>maxBox)
		index = j;
            end
	end
	cddBoxX = rects(index).col;
	cddBoxY = rects(index).row;
	cddBoxW = rects(index).width;
	cddBoxH = rects(index).height;
	
        imgCpy = DrawRectangle(imgCpy, cddBoxX, cddBoxY, cddBoxW , cddBoxH , [0 255 0], border);
    end
    imshow(imgCpy)
end

timeAvg = timeSum/frameN;
fprintf('average time: %f.\n', timeAvg);


树莓派可以通过连接摄像头模块来实现人脸跟踪。其中,OpenCV是一种常用的计算机视觉库,它提供了许多有用的功能,包括人脸检测和跟踪。以下是一个简单人脸跟踪程序: 1. 安装OpenCV库及其相关依赖项。 2. 连接摄像头模块,确保它能够正常工作。 3. 编写Python程序,引用OpenCV库,并使用它提供的cv2.CascadeClassifier函数来加载训练好的人脸检测器模型。 4. 通过cv2.VideoCapture函数打开摄像头。 5. 在一个while循环中,不断读取摄像头的帧,使用cv2.CascadeClassifier函数检测帧中的人脸,并使用cv2.rectangle函数在帧中标记出人脸的位置。 6. 最后,使用cv2.imshow函数显示帧,直到用户按下“q”退出程序。 下面是一个简单的示例代码: ``` python import cv2 face_cascade = cv2.CascadeClassifier('path/to/haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 在上面的代码中,`face_cascade`是一个`CascadeClassifier`对象,它加载了一个已经训练好的人脸检测器模型。`cap`是一个`VideoCapture`对象,它打开了摄像头。在while循环中,我们不断读取摄像头帧,将其转换为灰度图像,使用`detectMultiScale`函数检测人脸,并在帧中标记出人脸的位置。最后,我们使用`imshow`函数将帧显示出来,直到用户按下“q”退出程序。 请注意,此示例代码仅供参考,实际应用中需要进行更多的优化和调整,以实现更好的性能和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值