关闭

[简单题] Project Euler 603 Substring sums of prime concatenations

65人阅读 评论(0) 收藏 举报
分类:

直接考虑每一位的贡献,应该是一个 ai×i×(1+10++10ni) 的形式,这就是个等比数列求和
然后因为是循环串,还是个等比数列求和,就好了

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int P=1e9+7;

const int maxn=1e6;
ll n,K=1e12,NN;
int num,prime[maxn+5];
bool vst[(maxn+5)*20];
void Pre(int n){
  for (int i=2;i<=n;i++){
    if (!vst[i]) prime[++num]=i;
    for (int j=1;j<=num && (ll)i*prime[j]<=n;j++){
      vst[i*prime[j]]=1;
      if (i%prime[j]==0) break;
    }
  }
}

int S[(maxn+5)*10];

ll Ans=0;

inline ll Pow(ll A,ll B){
  B=(B%(P-1)+P-1)%(P-1); A%=P;
  ll ret=1;
  for (;B;B>>=1,A=A*A%P)
    if (B&1)
      ret=ret*A%P;
  return ret;
}
inline ll Inv(ll A){
  return Pow(A,P-2);
}

inline void Calc(ll I,ll v){
  ll S;
  S=I*Pow(10,NN+1+n-I)%P+P-((K-1)*n+I)%P*Pow(10,NN+1-(K-1)*n-I)%P+n*Pow(10,NN+1-I)%P*(Pow(10,-n*(K-1))+P-1)%P*Inv(Pow(10,-n)+P-1)%P;
  S%=P;
  (S*=Inv(Pow(10,n)+P-1))%=P;
  (S+=P-(I+(K-1)*n+I)%P*(K%P)%P*Inv(2)%P)%=P;
  S=S*Inv(9)%P;
  (Ans+=S*v%P)%=P;
}

inline void Brute(){
  ll ret=0;
  for (int i=1;i<=n*K;i++){
    ll t=0;
    for (int j=i;j<=n*K;j++){
      t=(t*10+S[(j-1)%n+1])%P;
      (ret+=t)%=P;
    }
  }
  printf("%lld\n",ret);
}

int main(){
  Pre(maxn*20);
  for (int i=1;i<=maxn;i++){
    int a[11],t=prime[i]; *a=0;
    while (t) a[++*a]=t%10,t/=10;
    for (int j=*a;j;j--)
      S[++n]=a[j];
  }
  NN=n*K;
  for (int i=1;i<=n;i++)
    Calc(i,S[i]);
  printf("%lld\n",Ans);
  //Brute();
  return 0;
}
0
0
查看评论

project euler 解题

project euler 3:Any integer greater than 1 is either a prime number, or can be written as a unique product of prime numbers (ignoring the order). 每一个数...
  • cctvzxxz1
  • cctvzxxz1
  • 2013-06-23 20:25
  • 3572

[中等题] Project Euler 608 Divisor Sums

这个题怎么Difficulty rating 80%80\% 啊,送经验的感觉啊 D(m,n)=======∑d|m∑k=1nσ0(kd)∑d|m∑k=1n∑a|k∑b|d[(a,b)=1]∑a=1n⌊na⌋∑d|m∑b|d[(a,b)=1]∑a=1n⌊na⌋∑d|m∑b|d∑i|a,i|bμ...
  • u014609452
  • u014609452
  • 2018-01-20 18:16
  • 97

ProjectEuler题解(更新到100题)

欧拉项目题解,源代码从Github上下载:https://github.com/cloudzfy/euler Multiples of 3 and 5Even Fibonacci numbersLargest prime factorLargest palindro...
  • cloudzfy1
  • cloudzfy1
  • 2016-12-14 12:10
  • 536

Project Euler:Problem 51 Prime digit replacements

By replacing the 1st digit of the 2-digit number *3, it turns out that six of the nine possible values: 13, 23, 43, 53, 73, and 83, are all prime...
  • youb11
  • youb11
  • 2015-07-01 19:58
  • 539

Project Euler 1-5题

第1题 题目来源ProjectEuler这个题求的是严格小于1000的数中,是3或5的倍数的数的和。(刚开始理解错below的意思了,把1000算进去了,尴尬)int main(){ int ans=0; for (int i=1;i<1000;i++){ ...
  • pfccWang
  • pfccWang
  • 2017-09-10 21:25
  • 190

Project Euler一句话题解(此贴持续更新)

好好搞一波数学,从PE第三页开刷101:Lagrange插值多项式 Ans:37076114526
  • MrBird_to_fly
  • MrBird_to_fly
  • 2016-10-20 20:45
  • 305

Project-Euler problem 1-50

最近闲的做了下Project Euler 上的题目,前面50题都比较简单,简单总结下,一下代码一般是Python和C/C++的 用Python 做这些题目简直是酸爽啊 一下代码可能不一定是我的,因为不知道论坛里面的回复不是永久的,所以我的代码有的丢了,可能找个和我的意思相近的代码。题目翻译是从 欧...
  • u011401504
  • u011401504
  • 2015-01-31 00:09
  • 2028

Project Euler 10

本文章来自我的个人网站,如感兴趣,欢迎访问我的个人网站:http://www.qingshuimonk.com/ 今天终于搞完了PE的第十题,说起来这道题做了得有小半个月了。 算法类似于PE的第十题,还是用之前的质数去除,以此来判断是否是质数,所以代码就在第七题的基础上稍稍改动一下就可以了。...
  • michaelxi007
  • michaelxi007
  • 2013-11-17 23:16
  • 786

【Project Euler】3 第三题

 //The prime factors of 13195 are 5, 7, 13 and 29.         //What is the largest prime factor of the number 600...
  • NoMasp
  • NoMasp
  • 2015-02-07 12:21
  • 1107

Project Euler 31-35题

第31题 题目来源ProjectEuler这一题求200可以由1,2,5,10,20,50,100,200以多少种不同的方式相加而成。 将硬币分别标记为f[1]=1;f[2]=2;f[3]=5;f[4]=10;f[5]=20;f[6]=50;f[7]=100];f[8]=200; 使用dp[i...
  • pfccWang
  • pfccWang
  • 2017-09-20 13:02
  • 125
    个人资料
    • 访问:364251次
    • 积分:13016
    • 等级:
    • 排名:第1238名
    • 原创:975篇
    • 转载:3篇
    • 译文:0篇
    • 评论:56条
    文章分类
    最新评论