# [杜教筛] Codechef January Challenge 2018 #SQRGOOD Simplify the Square Root

#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<map>
#include<algorithm>
#define pb push_back
using namespace std;
typedef long long ll;

namespace Rho{
int prime[9]={2,3,5,7,11,13,17,19,23};
unsigned long long RR;
inline long long R(long long Mo){return (RR+=4179340454199820289ll)%Mo;}
inline long long mul(long long x,long long y,long long Mo){
long long tmp=(x*y-(long long)((long double)x/Mo*y+0.5)*Mo);
return tmp<0?tmp+Mo:tmp;
}
inline long long Pow(long long x,long long k,long long Mo){
long long ans=1;
for(;k;k>>=1,x=mul(x,x,Mo))if(k&1)ans=mul(ans,x,Mo);
return ans;
}
inline bool MR(long long n){
if(n<=1)return false;
for(int i=0;i<9;i++)if(n==prime[i])return true;
long long d=n-1;int tmp=0;
while((d&1)==0)d>>=1,tmp++;
for(int i=0;i<9;i++){
long long x=Pow(prime[i],d,n),p=x;
for(int j=1;j<=tmp;j++){
x=mul(x,x,n);
if((x==1)&&(p!=1)&&(p!=n-1))return false;
p=x;
}
if(x!=1)return false;
}
return true;
}
inline long long f(long long x,long long c,long long Mo){return (mul(x,x,Mo)+c)%Mo;}
inline long long gcd(long long x,long long y){return x==0?y:gcd(y%x,x);}
inline long long check(long long c,long long n){
long long x=R(n),y=f(x,c,n),p=n;
while((x!=y)&&((p==n)||(p==1))){
if(x>y)p=gcd(n,x-y);
else p=gcd(n,y-x);
x=f(x,c,n);y=f(f(y,c,n),c,n);
}
return p;
}

vector<ll> v;

inline void rho(long long n){
if(n<=1)return;
if(MR(n)){v.pb(n);return;}
while(true){
long long tmp=check(R(n-1)+1,n);
if(tmp!=n && tmp!=1){rho(tmp),rho(n/tmp);return;}
}
}

inline bool nmu2(ll n){
v.clear(); rho(n);
sort(v.begin(),v.end());
for (int i=0;i<v.size();i++) if (v[i]==v[i+1]) return 1;
return 0;
}
}

const int maxn=20000000;
const int N=maxn+5;

int prime[7000000],num;
int mu[N],mu2[N];

const int P=10000007;

inline void Pre(int n){
mu[1]=1; int *vst=mu2;
for (int i=2;i<=n;i++){
if (!vst[i]) prime[++num]=i,mu[i]=-1; ll t;
for (int j=1;j<=num && (t=(ll)i*prime[j])<=n;j++){
vst[t]=1;
if (i%prime[j]==0){
mu[t]=0; break;
}else
mu[t]=-mu[i];
}
}
for (int i=1;i<=n;i++) mu2[i]=((bool)mu[i])+mu2[i-1],mu[i]=mu[i-1]+mu[i];
}

map<int,int> Map;

inline int Sum(int n){
if (n<=maxn) return mu[n];
if (Map.find(n)!=Map.end()) return Map[n];
int tem=1; int l,r;
for (l=2;l*l<=n;l++) tem-=Sum(n/l);
for (int t=n/l;l<=n;l=r+1,t--){
r=n/t;
tem-=(r-l+1)*Sum(t);
}
return Map[n]=tem;
}

inline ll S(ll n){
if (n<=maxn) return n-mu2[n];
int x=sqrt(n); ll ret=0,cur,lst=0;
for (int i=1,j;i<=x;i=j+1){
ll t=n/i/i; j=sqrt(n/t);
ret+=((cur=Sum(j))-lst)*t;
lst=cur;
}
return n-ret;
}

const double PI=acos(-1.0);
const double _K=1.0/(1-6.0/PI/PI);
const double K=2.550546096730430440286486962;

ll n;

inline ll Mod(ll x,ll f){
if (f>=n){
while (f>=n){
f-=Rho::nmu2(x);
if (f<n) return x;
x--;
}
}else{
while (f<n){
f+=Rho::nmu2(x+1);
if (f>=n) return x+1;
x++;
}
}
}

int main(){
freopen("t.in","r",stdin);
freopen("t.out","w",stdout);
Pre(maxn);
scanf("%lld",&(n));
ll L,R,MID,f1,f2;
L=1; R=max(1e10,2.550546098*n);
f1=S(L); f2=S(R);
while (L+1<R){
if (f2-n<=1000){
R=Mod(R,f2);
break;
}
if (n-f1<=1000){
R=Mod(L,f1);
break;
}
MID=L+(long double)(n-f1)/(f2-f1)*(R-L);
ll f=S(MID);
if (f==n){
R=Mod(MID,f); break;
}
if (f>n)
f2=f,R=MID;
else
f1=f,L=MID;
}
printf("%lld\n",R);
return 0;
}