蓝桥杯---剪格子(DFS&BFS)(小总结)

本文探讨了一种使用深度优先搜索(DFS)和广度优先搜索(BFS)解决二维矩阵中整数分割问题的方法。通过判断矩阵能否被分割成两个部分,使得这两个部分的数字和相等,作者提出了从递归入口开始计数的DFS方法,并通过调整搜索策略优化了解决方案。此外,文章还分析了不同搜索方法的特点和应用范围。

问题描述

如下图所示,3 x 3 的格子中填写了一些整数。

+--*--+--+
|10* 1|52|
+--****--+
|20|30* 1|
*******--+
| 1| 2| 3|
+--+--+--+

我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60。

本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。

如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。

如果无法分割,则输出 0。

输入格式

程序先读入两个整数 m n 用空格分割 (m,n<10)。

表示表格的宽度和高度。

接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。

输出格式
输出一个整数,表示在所有解中,包含左上角的分割区可能包含的最小的格子数目。
样例输入1
3 3
10 1 52
20 30 1
1 2 3
样例输出1
3
样例输入2
4 3
1 1 1 1
1 30 80 2
1 1 1 100
样例输出2
10
 
(注意这道题比较奇葩的地方就是,平时的都是先输入行再输入列,但是这道题是先输入列再输入行。。。)

BFS有点忘,但是没想到dfs竟然也能水过,这么屌丝的测试数据也是醉了,测试数据要么是错的,要么边界条件没有检查清楚,总之是各种BUG,比赛收那么多钱都干什么了,出题质量差的要死啊,蓝桥果然渣渣。。。
在这道题里首先神搜的话是没法查找最短路径的,并且很容易检测下面的代码根本就不是什么最短路径,另外有些爱情,比如
3 3
10 11 1
1 1 1
3 3 9
这样的很明显是把11和9给分开了,但是运行是出结果的显然错误。。。(但是还可以稍微改变下处理。。。见下文。。。)

#include <iostream>
#include <string.h>
using namespace std;
#define INF 0x3f3f3f3f 
int a[10][10];
int dx[4] = {0,1,0,-1};
int dy[4] = {1,0,-1,0};
bool isv[10][10];
int M,N,SUM;
bool judge(int x,int y,int num)
{
    if( x<1 || y<1 || x>N || y>M )    //越界 
        return 1;
    if( isv[x][y] )    //访问过 
        return 1;
    if( num + a[x][y] > SUM/2 )    //走这一步超过了和的1半 
        return 1;
    return 0;
}
int dfs(int x,int y,int num)
{
    if(num==SUM/2)
        return 1;
    for(int i=0;i<4;i++){
        int nx = x + dx[i];
        int ny = y + dy[i];
        if( judge(nx,ny,num) )    //判断 
            continue;
        //下一步可以走
        isv[nx][ny] = true;
        int temp=dfs(nx,ny,num+a[nx][ny]);
        if(temp!=0)    //产生结果,直接返回 
           return temp+1;
        isv[nx][ny] = false;
    }
    return 0; 
}
int main()
{
    while(cin>>M>>N){
        SUM = 0;
        for(int i=1;i<=N;i++)
            for(int j=1;j<=M;j++){
                cin>>a[i][j];
                SUM += a[i][j];
            }
        if( SUM%2 ){    //和是奇数一定不可以 
            cout<<0<<endl;
        }
        else{    //和是偶数继续判断
            memset(isv,0,sizeof(isv));
            isv[1][1] = true;
            cout<<dfs(1,1,a[1][1])<<endl;
        }
    }
    return 0;
}



之后又在交谈时,突然转过弯来上面的计数是从深层开始向上计数的,这样的话显然是不好查找最小值的,因为这样的话只要不在最后出口的时候是没有方法比较的,但是完全可以改变为从递归的开始来计数,这样的话显然就处理好这个问题了,所以继续Coding...

#include <iostream>
#include <string.h>
#include <cstdio>
using namespace std;
#define INF 0x3f3f3f3f 
int a[10][10];
int dx[5] = {0,1,0,-1,1};
int dy[5] = {1,0,-1,0,-1};
bool isv[10][10];
int M,N,SUM;
int Min = INF ;
bool judge(int x,int y,int num)
{
    if( x<1 || y<1 || x>N || y>M )    //越界 
        return 1;
    if( isv[x][y] )    //访问过 
        return 1;
    if( num + a[x][y] > SUM/2 )    //走这一步超过了和的1半 
        return 1;
    return 0;
}
bool judgeNotSeperate(int count){//用来判断是否区间被分开了
  //  Print(); 
	int temcount=0;
	for(int i=1;i<=N;i++)
	  for(int j=1;j<=M;j++){
	  	if(isv[i][j]==false){//当该位置未被访问到,有可能会出现间断 
	  	   temcount++;
		   if( (i+1<=N&&isv[i+1][j]==0)||(i-1>=0&&isv[i-1][j]==0)||(j+1<=M&&isv[i][j+1]==0)||(j-1>=0&&isv[i][j-1]==0) )//如果周围有同样没有被访问到的说明在该点没有出现间断 
		       continue;
		   else
		     return  count-temcount==0 ? true:false;//若为最后一点,同样返回true 
	  	}
	  }
	  return true;
} 
int dfs(int x,int y,int num,int count)//num计算路径和,count为路径长度计数器 
{
    if(num==SUM/2){
      if(Min>count&&judgeNotSeperate(M*N-count))//judgeNotSeperate(M*N-count)判断是否切割为多部分 ,这道题数据比较小,没有必要剪枝,但是稍微大点就应该在深搜的时候剪枝了。。。
         Min=count;
       return 0;
	}
    for(int i=0;i<5;i++){
        int nx = x + dx[i];
        int ny = y + dy[i];
        if( judge(nx,ny,num) )    //判断 
            continue;
                                    //下一步可以走
        isv[nx][ny] = true;			
        dfs(nx,ny,num+a[nx][ny],count+1);
        isv[nx][ny] = false;   //还原 
    }
    return 0; 
}
int main()
{
    while(cin>>M>>N){
    	Min=INF;//一定注意初始化//不过水水的蓝桥杯上每次只有一组测试数据,随意循环输入多组测试数据只是自己方便,测试网站上每组输入都会有^EOF的(当然while(1)是肯定不行的))
        SUM = 0;
        for(int i=1;i<=N;i++)
            for(int j=1;j<=M;j++){
                cin>>a[i][j];
                SUM += a[i][j];
            }
        if( SUM%2 ){    //和是奇数一定不可以 
            cout<<0<<endl;
        }
        else{    //和是偶数继续判断
            memset(isv,0,sizeof(isv));
            isv[1][1] = true;
			dfs(1,1,a[1][1],1);
			if(Min==INF)
			  cout<<0<<endl;
            else
			  cout<<Min<<endl;
        }
    }
    return 0;
}


PS:

小反思:

(1)之前一直不太计较从最后递归出口(深层)和从递归入口开始计数之间的区别,但是这道题中两种方法之间的区别好像显示的淋漓尽致了,所以深度搜索不是不能求最优解,也不是不能记录路径(当然最优解问题还是不如BFS,但至少可以),而是在于处理的差别上。

(2)还有一般不要将数组放在递归里,因为他不同于变量,一般会相对来说比较大,所以曾经的自己就在深搜的时候出现过暴栈(相信一般人是做不到这一点大哭

啊,多么痛的领悟。。。

(3)之前都是在用几个if分情况分情况深搜,上面用for 处理的就比较好,代码很短。。。


BFS:

BFS肯定也是可以的

(待续)


### 蓝桥杯 DFS 和 BFS 的真题题目及解析 #### 题目一:邮票 (DFS 枚举组合情况 + BFS 判断连通性) 此题来源于蓝桥杯历年的经典题目之一——邮票问题。该问题的核心在于通过 **DFS** 来枚举可能的解空间,并利用 **BFS** 判断剩余部分是否仍然保持连通性。 ##### 问题描述 给定一张由若干个相连的小正方形组成的矩形纸片,表示一片完整的邮票区域。每次可以从这片区域内移除一个小正方形,问是否存在一种方式使得最终剩下的部分仍然是连通的一整块。 ##### 解析 为了实现这一目标,可以通过以下方法解决: 1. 使用 **DFS** 对所有可能的删除顺序进行穷举。 2. 在每一次删除操作之后,调用 **BFS** 或并查集来判断当前剩余的部分是否依然构成单一连通块[^1]。 以下是基于 C++ 实现的一个简单框架: ```cpp #include <iostream> #include <queue> using namespace std; const int MAX_N = 10; bool grid[MAX_N][MAX_N]; int n, m; // BFS 函数用于检测连通性 bool bfs(int sx, int sy) { queue<pair<int, int>> q; bool visited[MAX_N][MAX_N] = {false}; q.push({sx, sy}); visited[sx][sy] = true; int count = 0; while (!q.empty()) { auto [x, y] = q.front(); q.pop(); ++count; static const int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1}; for (int i = 0; i < 4; ++i) { int nx = x + dx[i], ny = y + dy[i]; if (nx >= 0 && nx < n && ny >= 0 && ny < m && !visited[nx][ny] && grid[nx][ny]) { visited[nx][ny] = true; q.push({nx, ny}); } } } // 如果遍历到的所有格子数量等于总有效格子数,则说明连通 return count == n * m; } void dfs(int step) { if (step == n * m) { // 检测最后状态是否满足条件 for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (grid[i][j] && bfs(i, j)) { cout << "存在合法方案" << endl; return; } } } return; } // 尝试保留当前位置或者将其移除 int r = step / m, c = step % m; if (grid[r][c]) { // 移除这个位置 grid[r][c] = false; dfs(step + 1); grid[r][c] = true; // 不移除此位置 dfs(step + 1); } else { dfs(step + 1); } } ``` --- #### 题目二:独立海域 (BFS 应用实例) 本题是一个典型的 **BFS** 应用场景,涉及如何在一个二维网格中找到未被污染的孤立区块。 ##### 问题描述 给定一个大小为 \(n \times m\) 的矩阵,其中某些单元格已经被标记为受污染的状态(例如 'X'),而其他单元格则处于正常状态(例如 '.')。如果某个正常的单元格周围全部都是污染区,则认为它是一块完全隔离的安全区域。求这样的安全区域的数量。 ##### 解析 针对这个问题,可以采用如下策略: 1. 初始化一个布尔数组 `vis` 记录哪些节点已经访问过。 2. 遍历整个地图,当遇到尚未访问过的正常单元格时启动一次 **BFS** 探索其周围的环境。 3. 若发现某次探索的结果表明该单元格四周均为污染区,则计数器加一[^4]。 下面是 Python 版本的具体实现代码: ```python from collections import deque def is_isolated(x, y, grid, vis): directions = [(0, 1), (1, 0), (-1, 0), (0, -1)] n, m = len(grid), len(grid[0]) # 边界外默认视为污染区 for dx, dy in directions: nx, ny = x + dx, y + dy if 0 <= nx < n and 0 <= ny < m and grid[nx][ny] != 'X': return False return True def count_safe_areas(grid): n, m = len(grid), len(grid[0]) vis = [[False]*m for _ in range(n)] safe_count = 0 for i in range(n): for j in range(m): if not vis[i][j] and grid[i][j] == '.': if is_isolated(i, j, grid, vis): safe_count += 1 # 启动 BFS 扩散标记已访问区域 q = deque([(i, j)]) while q: cx, cy = q.popleft() if vis[cx][cy]: continue vis[cx][cy] = True for dx, dy in ((0, 1), (1, 0), (-1, 0), (0, -1)): nx, ny = cx + dx, cy + dy if 0 <= nx < n and 0 <= ny < m and not vis[nx][ny] and grid[nx][ny] == '.': q.append((nx, ny)) return safe_count # 测试样例 if __name__ == "__main__": grid = [ ['.', '.', 'X', '.'], ['X', '.', 'X', 'X'], ['.', '.', '.', 'X'] ] result = count_safe_areas(grid) print(f"共有 {result} 块独立安全区域") ``` --- #### 总结 上述两道题目分别展示了 **DFS** 和 **BFS** 在实际竞赛中的应用形式。前者侧重于复杂状态的空间搜索以及连通性的验证;后者更关注局部范围内的可达性和边界判定。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI蜗牛之家

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值