蓝桥杯---bfs

这段代码展示了如何使用广度优先搜索(BFS)算法解决一个经典的迷宫问题。程序首先读取迷宫的行数和列数,然后通过二维数组表示迷宫,并用全局变量存储移动方向。在BFS函数中,定义了一个节点结构体用于存储当前位置、步数和路径,并使用队列进行路径探索。当找到终点时,输出最短路径和步数。
#include <bits/stdc++.h>
using namespace std;

char mp[30][50]; //地图
bool vis[30][50]; //是否被走过
int dir[4][2] = { {1,0}, {0,1}, {-1,0}, {0,-1} };  // 按照数组方向:下,右,上,左
char dirc[4] = {'D','R','U','L'};
int n, m;   //迷宫的行和列
//对于dfs 和 bfs 来说 数组的基本信息最好放在全局变量

struct node   //bfs  必带结构体
{
    int x;  // 横坐标
    int y; // 纵坐标
    int step; //步数
    string str; //路径

    node(int xx, int yy, int pp, string s)
    {
        x = xx;  y = yy; step = pp; str = s;
    }

};

queue <node> Q; //***先创建结构体 ,再  queue <结构名> Q  的格式(Q代表队列名)

bool check(int x, int y)//判断是否越界、是否走过、是否是障碍物
{
    if(x<0 || x>=n || y<0 || y>=m || vis[x][y] || mp[x][y] == '1')
        return false;
    return true;
}

void bfs (int x, int y){
    Q.push(node(x,y,0,""));  //bfs 一进来我们就需要将初始位置 入队列、标记已走过。
    vis[x][y] = true;          // 标准 Q.push(结构名(属性,属性···))

    while(!Q.empty()){
        node now = Q.front();  //每层的while 都会 Q.front 来查看队首 是否满足break条件
        if(now.x == n-1 && now.y == m-1){
            cout<<now.str<<endl;
            cout<<now.step<<endl;
            break;
        }

        Q.pop();  //如果没到终点,舍弃队首、出队列

        for(int i=0; i<4; i++){
            int nx = now.x + dir[i][0];
            int ny = now.y + dir[i][1];
            if(check(nx,ny)){
                Q.push(node(nx, ny, now.step+1, now.str+dirc[i])); //步数和路程都是不断叠加起来的,每一个结构体包含之前所有的步数和路径 + 当前步数(1)和对应步伐
                vis[nx][ny] = true;
            }
        }
    }
}

int main(){
    cin>>n>>m;
    for(int i=0; i<n; i++)  //对于大数据整数输入,一层循环即可,n代表有多少排
        cin>>mp[i];  // 这里其实每次输入一排的数据
    bfs(0,0);
    return 0;
}

### 蓝桥杯 BFS 算法题目解析 #### 题目分析 本题的核心在于模拟黑色区域的扩散过程。通过广度优先搜索(BFS),可以有效地计算出经过一定时间后,黑色区域覆盖了多少个格子。 初始状态下,存在若干个黑点 `(0, 0)`、`(2020, 11)`、`(11, 14)` 和 `(2000, 2000)`。每分钟这些黑点会向上下左右四个方向扩展一单位距离。因此,在第 `t` 分钟时,任意一个黑点 `(x, y)` 的影响范围是一个边长为 `2 * t + 1` 的正方形,中心位于该点[^1]。 为了求解最终有多少个格子变黑,可以通过集合操作来统计所有受影响的格子数量。 --- #### 解决方案 以下是基于 Python 实现的一个解决方案: ```python from collections import deque def bfs_black_spread(points, minutes): visited = set() # 记录访问过的节点 queue = deque() # 初始化队列并加入起始点 for point in points: queue.append(point) visited.add(point) directions = [(0, 1), (1, 0), (-1, 0), (0, -1)] # 上下左右移动的方向 time = 0 # 当前时间为 0 while queue and time < minutes: level_size = len(queue) # 处理当前层的所有节点 for _ in range(level_size): current_x, current_y = queue.popleft() for dx, dy in directions: new_x, new_y = current_x + dx, current_y + dy if (new_x, new_y) not in visited: visited.add((new_x, new_y)) queue.append((new_x, new_y)) time += 1 # 时间增加一秒 return len(visited) # 初始黑点列表 initial_points = [(0, 0), (2020, 11), (11, 14), (2000, 2000)] # 经历的时间 total_minutes = 2020 result = bfs_black_spread(initial_points, total_minutes) print(result) ``` 上述代码实现了 BFS 扩散的过程,并利用集合记录已经变为黑色的格子。每次从队列中取出一个点并向四周扩展,直到达到指定的时间步数为止。 --- #### 结果优化与理论推导 对于此问题,还可以采用更高效的数学方法进行解决。由于每个黑点的影响范围独立且可叠加,我们可以分别计算每个黑点在给定时间内能够覆盖的最大矩形面积,再去除重叠部分即可得到总覆盖面积。 具体来说,假设某一点 `(xi, yi)` 在 `T` 分钟内的最大覆盖半径为 `R = T`,那么其覆盖范围即为以 `(xi, yi)` 为中心、边长为 `2*R+1` 的正方形。多个这样的正方形可能存在交集,需借助几何运算排除重复计数的部分。 这种方法避免了逐一遍历每一个可能的位置,从而显著提高了效率。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值