八皇后(可以扩展为N皇后问题)
每行每列每个对角线都不允许有两个或两个以上的皇后
回溯,递归求解
#include<iostream>/// 八皇后
#include<cstdio>
using namespace std;
int c[10]; /// 第i行 列为a[i]
int total;
int n;
/// 在一条主对角线上 则它们的 x-y相同 y=x+b
/// 在一条负对角线上 则它们的 x+y相同 y=-x+b
int v[3][100]; /// v[0]列 v[1]主对角线 v[2]负对角线
int dfs_1(int cur) // 填充第cur行
{
if(cur==n){
total++;
//for(int i=0;i<n;i++)
// printf("%d %d\n",i,c[i]);
//puts("\\\\");
}
else{
for(int i=0;i<n;i++){// 列
int ok=1;
for(int j=0;j<cur;j++)//行
if(c[j]==i||cur-j==i-c[j]||cur-j==c[j]-i) // 存在两元素在 同一列 或对角线
ok=0; // or if(c[j]==i||abs(cur-j)==abs(i-c[j]))
if(ok){//puts("[]");
c[cur]=i;
dfs_1(cur+1);
}
}
}
}
/// 优化
int dfs_2(int cur) // 填充第cur行
{
if(cur==n){
total++;
//for(int i=0;i<n;i++)
// printf("%d %d\n",i,c[i]);
//puts("\\\\");
}
else{
for(int i=0;i<n;i++){// 列,即第cur个皇后放在第i列上
if(!v[0][i]&&!v[1][cur-i+n]&&!v[2][cur+i]){ // 第cur行第i个列的同列,主对角线,副对角线上均没有元素
v[0][i]=v[1][cur-i+n]=v[2][cur+i]=1;
c[cur]=i;
dfs_2(cur+1);
v[0][i]=v[1][cur-i+n]=v[2][cur+i]=0;
}
}
}
}
void swap_(int a,int b)
{
int t = c[a];
c[a] = c[b];
c[b] = t;
}
/// 排列树搜索八皇后
int dfs_3(int cur) // 填充第cur行
{
if(cur > n){
total++;
}
else{
for(int i = cur ; i <= n ; i ++ ) {// 列,即第cur个皇后放在第i列上
swap_(i , cur) ;
if(!v[1][cur-c[cur]+n]&&!v[2][cur+c[cur]]){ // 主对角线,副对角线上均没有元素
v[1][cur-c[cur]+n] = v[2][cur+c[cur]]=1;
dfs_3(cur+1);
v[1][cur-c[cur]+n] = v[2][cur+c[cur]]=0;
}
swap_(i , cur) ;
}
}
}
int main()
{
total=0;
n=8;
dfs_1(0);
cout<<total<<endl;
total=0;
dfs_2(0);
cout<<total<<endl;
for (int i = 1 ; i <= n ; i ++ )
c[i] = i ;
total=0;
dfs_3(1);
cout<<total<<endl;
return 0;
}
回溯,非递归求解
#include<iostream> // 非递归求解
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define MAX 100
int is(int* c,int k)
{
int i;
for(i=1;i<k;i++)
if(c[k]==c[i]||abs(i-k)==abs(c[k]-c[i]))
return 0;
return 1;
}
int main()
{
int c[MAX];
int N,i,j,k,case_=0;
puts("输入皇后个数");
scanf("%d",&N); // N皇后
for(j=1;j<=N;j++)
c[j]=0;
i=1;
while(i>=1){
c[i]=c[i]+1;
while(c[i]<=N&&!is(c,i))
c[i]=c[i]+1;
if( c[i]<=N ){// 找到
if(i==N) {
printf("Case %d \n",++case_);
for (k = 1 ; k <= N ; k ++) {
for(j = 1 ; j <= N ; j ++) {
if (c[k] == j) printf("* ");
else printf("- ");
}
puts("");
}
}
else {
i++;
c[i] = 0; //从新开始找
}
}
else{//回溯
i=i-1;
}
}
printf("%d\n",case_);
return 0;
}
本文详细介绍了八皇后问题的回溯算法求解过程,包括递归和非递归两种方法,并通过代码实现展示了如何使用这些算法解决八皇后问题。文中还提供了优化方法和排列树搜索技巧,帮助读者深入理解并应用回溯算法。
750

被折叠的 条评论
为什么被折叠?



