全排列

原创 2015年07月09日 18:13:49

全排列

暴力枚举,每次在数组中选一个数,能则继续选下一个,否则另找一个数。


#include<iostream> /// 排列
#include<cstdio>
#include<cstring>
using namespace std;

/** 1~n的全排列 */
void next(int n,int* a,int cur) /// 1~n的全排列 cur 要填充的位置
{
    if(cur==n){
        for(int i=0;i<n;i++)printf("%d ",a[i]);
        printf("\n");
    }
    else
    for(int i=1;i<=n;i++){ //从n个数中找一个 填补a[cur]
        int ok=1;
        for(int j=0;j<cur;j++)
            if(a[j]==i) ok=0; // i 已经在a[0]~a[cur-1] 中出现
        if(ok){
                a[cur]=i;
                next(n,a,cur+1);
        }
    }
}

/** 数组b[]的全排列  b[]中的元素要互不相同  */
/// way one
void next_b_1(int n,int*a,int*b,int cur) ///   b[]中的数互不相同  b[]的全排列
{
    if(cur==n){
        for(int i=0;i<n;i++)printf("%d ",a[i]);
        printf("\n");
    }
    else{
        for(int i=0;i<n;i++){
            int ok=1;
            for(int j=0;j<cur;j++)
                if(a[j]==b[i]) ok=0;
            if(ok){
                a[cur]=b[i];
                next_b_1(n,a,b,cur+1);
            }
        }
    }
}

/// way two
int v[1000]={0};
void next_b_2(int n,int*a,int*b,int cur) /// b[]中的数互不相同  b[]的全排列
{
    if(cur==n){
        for(int i=0;i<n;i++)printf("%d ",a[i]);
        printf("\n");
    }
    else{
        for(int i=0;i<n;i++){
            if(!v[i]){
                v[i]=1;   /// 标记走过没有
                a[cur]=b[i];
                next_b_2(n,a,b,cur+1);
                v[i]=0;
            }
        }
    }
}

/** 数组b[]的全排列  b[]中的元素允许相同  不过b[]要有序 */
void next_c(int n,int*a,int*b,int cur) /// b[]中的数可以相同    注意 b[]要有序   需先排序
{
    if(cur==n){
        for(int i=0;i<n;i++)printf("%d ",a[i]);
        printf("\n");
    }
    else{
        for(int i=0;i<n;i++)
        if(!i||b[i]!=b[i-1])/// 确保多个相同的数 只递归一个即可
            {
            int c1=0,c2=0;
            for(int j=0;j<cur;j++) if(a[j]==b[i]) c1++;
            for(int j=0;j<n;j++) if(b[j]==b[i]) c2++;
            if(c1<c2){
                a[cur]=b[i];
                next_c(n,a,b,cur+1);
            }
        }
    }
}

int main()
{
    //freopen("out1.txt","w",stdout);
    int a[100]={0};
    //next(5,a,0);

    int b[]={5,1,7,3,8};
    int n=5;
    //next_b_1(n,a,b,0);
    next_b_2(n,a,b,0);

    int b_1[]={1,2,2,3};
    n=4;
    //next_c(n,a,b_1,0);

    int b_2[]={2,1,1,1};
    n=4;
    //next_c(n,a,b_2,0);


    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

Java实现从m个各不相同的元素中取出n个,并进行全排列。

下面的代码主要解决的问题是:从m个各不相同的元素中取出n个,进行全排列,得到所有可能的结果。 即:输入为字符数组(数组内每个字符均不相同)和个数n,返回由这些字符组成的所有长度为n的字符串。...
  • tang_fei
  • tang_fei
  • 2017年02月26日 18:29
  • 835

数组中任意n个数的全排列(DFS)以及任意n个数的组合

今天做了poj1270这道题,采用了深度优先搜索,确实启发了我,无意中想了一个这么一个问题:求数组中任意n个数的全排列是不是也可以用深度优先去搜索(我理解这是一种深度搜索,不知道对不对)。 代码如下:...
  • u010064842
  • u010064842
  • 2013年05月02日 22:51
  • 2529

全排列数的生成

这学期好忙,整个人都变懒了。。coursera上的课程作业只来得及更新到github上,希望自己以后看着注释还能记得怎么做。。。得空把上学期的一些作业放这里。 【问题描述】输入整数N( 1 ...
  • Jason_Ranger
  • Jason_Ranger
  • 2016年09月20日 13:21
  • 1664

全排列(来自蓝桥杯)

做了道蓝桥杯的题,发现并不会做,不过这个题做了也算涨了个知识点。 题目: 相信大家都知道什么是全排列,但是今天的全排列比你想象中的难一点。我们要找的是全排列中,排列结果互不相同的个数。比如:aab 的...
  • qq_39627843
  • qq_39627843
  • 2018年01月24日 16:36
  • 21

全排列_蓝桥杯问题+一点对递归的看法

给定N个不同字符,将这N个字符全排列,最终的结果将会是N!种。 如:给定 A、B、C三个不同的字符,则结果为:ABC、ACB、BAC、BCA、CAB、CBA一共3!=3*2=6种情况。 通...
  • qq_27782065
  • qq_27782065
  • 2016年03月17日 16:02
  • 516

Openjudge 2.2 1750:全排列

.
  • C20192419MYS
  • C20192419MYS
  • 2017年04月19日 13:22
  • 551

输出全排列(递归&非递归)

递归算法: 假设总共有n个元素,其核心是:将每个元素放到余下n-1个元素组成的队列最前方,然后对剩余元素进行全排列,依次递归下去。 比如:1 2 3 首先将1放到最前方(跟第1个元素交换),然后...
  • prstaxy
  • prstaxy
  • 2012年11月04日 22:59
  • 7701

老掉牙的 全排列问题

这是我很早写的程序,算是灌水文章全排列程序的一种思路                                                           一个数的全排列,如2的全排列为...
  • xshwu
  • xshwu
  • 2002年03月12日 08:52
  • 801

计蒜客2018蓝桥杯省赛B组模拟赛(一)题目及解析(未完待续)

一、题目列表 A. 结果填空:年龄        分值: 3 B. 结果填空:开关灯    分值: 7 C. 结果填空:U型数字 分值: 9 D. 代码填空:LIS        分值: 11 E....
  • cr496352127
  • cr496352127
  • 2018年01月21日 11:39
  • 783

全排列计算(康托展开)

题目描述 给出一个1~n的全排列中的某一个,求它是按字典序排列的第几个。 输入输出格式 输入格式: 第一行,一个n; 第二行,依次是n个数。 输出格式: ...
  • update7
  • update7
  • 2017年02月23日 21:38
  • 15739
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:全排列
举报原因:
原因补充:

(最多只允许输入30个字)