关闭

Ants - POJ 3565 KM算法

249人阅读 评论(0) 收藏 举报
分类:

Ants
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 4699   Accepted: 1479   Special Judge

Description

Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on apple trees. Each ant colony needs its own apple tree to feed itself.

Bill has a map with coordinates of n ant colonies and n apple trees. He knows that ants travel from their colony to their feeding places and back using chemically tagged routes. The routes cannot intersect each other or ants will get confused and get to the wrong colony or tree, thus spurring a war between colonies.

Bill would like to connect each ant colony to a single apple tree so that all n routes are non-intersecting straight lines. In this problem such connection is always possible. Your task is to write a program that finds such connection.

On this picture ant colonies are denoted by empty circles and apple trees are denoted by filled circles. One possible connection is denoted by lines.

Input

The first line of the input file contains a single integer number n (1 ≤ n ≤ 100) — the number of ant colonies and apple trees. It is followed by n lines describing n ant colonies, followed by n lines describing n apple trees. Each ant colony and apple tree is described by a pair of integer coordinates x and y (−10 000 ≤ xy ≤ 10 000) on a Cartesian plane. All ant colonies and apple trees occupy distinct points on a plane. No three points are on the same line.

Output

Write to the output file n lines with one integer number on each line. The number written on i-th line denotes the number (from 1 to n) of the apple tree that is connected to the i-th ant colony.

Sample Input

5
-42 58
44 86
7 28
99 34
-13 -59
-47 -44
86 74
68 -75
-68 60
99 -60

Sample Output

4
2
1
5
3

题意:求一种方式,使得每个蚂蚁与一个苹果树相连,并且线段不相交。

思路:用KM算法,求出最短距离和,即他们不相交。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int n,nx,ny,linky[110],INF=1e9;
double lx[110],ly[110],w[110][110],slack[110],x_1[110],y_1[110],x_2[110],y_2[110],eps=1e-9;
bool visx[110],visy[110];
int dcmp(double x){return (x>eps)-(x<-eps);}
bool Find(int x)
{
    int y;
    double t;
    visx[x]=1;
    for(y=1;y<=ny;y++)
       if(!visy[y])
       {
           t=lx[x]+ly[y]-w[x][y];
           if(dcmp(t)==0)
           {
               visy[y]=1;
               if(linky[y]==-1 || Find(linky[y]))
               {
                   linky[y]=x;
                   return true;
               }
           }
           else if(slack[y]>t)
             slack[y]=t;
       }
    return false;
}
void KM()
{
    int i,j,k,x,y;
    double d;
    memset(linky,-1,sizeof(linky));
    memset(ly,0,sizeof(ly));
    for(i=1;i<=nx;i++)
    {
        lx[i]=-INF;
        for(j=1;j<=ny;j++)
           lx[i]=max(lx[i],w[i][j]);
    }
    for(i=1;i<=nx;i++)
    {
        for(j=1;j<=ny;j++)
           slack[j]=INF;
        while(true)
        {
            memset(visx,0,sizeof(visx));
            memset(visy,0,sizeof(visy));
            if(Find(i))
              break;
            d=INF;
            for(j=1;j<=ny;j++)
               if(!visy[j] && d>slack[j])
                 d=slack[j];
            for(j=1;j<=nx;j++)
               if(visx[j])
                 lx[j]-=d;
            for(j=1;j<=ny;j++)
               if(visy[j])
                 ly[j]+=d;
               else
                 slack[j]-=d;
        }
    }
}
int main()
{
    int i,j,k;
    while(~scanf("%d",&n))
    {
        nx=ny=n;
        for(i=1;i<=n;i++)
           scanf("%lf%lf",&x_2[i],&y_2[i]);
        for(i=1;i<=n;i++)
           scanf("%lf%lf",&x_1[i],&y_1[i]);
        for(i=1;i<=n;i++)
           for(j=1;j<=n;j++)
              w[i][j]=-sqrt((x_1[i]-x_2[j])*(x_1[i]-x_2[j])+(y_1[i]-y_2[j])*(y_1[i]-y_2[j]));
        KM();
        for(i=1;i<=n;i++)
           printf("%d\n",linky[i]);
    }
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:287543次
    • 积分:9520
    • 等级:
    • 排名:第1884名
    • 原创:696篇
    • 转载:12篇
    • 译文:0篇
    • 评论:22条
    最新评论