# Ants - POJ 3565 KM算法

Ants
 Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4699 Accepted: 1479 Special Judge

Description

Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on apple trees. Each ant colony needs its own apple tree to feed itself.

Bill has a map with coordinates of n ant colonies and n apple trees. He knows that ants travel from their colony to their feeding places and back using chemically tagged routes. The routes cannot intersect each other or ants will get confused and get to the wrong colony or tree, thus spurring a war between colonies.

Bill would like to connect each ant colony to a single apple tree so that all n routes are non-intersecting straight lines. In this problem such connection is always possible. Your task is to write a program that finds such connection.

On this picture ant colonies are denoted by empty circles and apple trees are denoted by filled circles. One possible connection is denoted by lines.

Input

The first line of the input file contains a single integer number n (1 ≤ n ≤ 100) — the number of ant colonies and apple trees. It is followed by n lines describing n ant colonies, followed by n lines describing n apple trees. Each ant colony and apple tree is described by a pair of integer coordinates x and y (−10 000 ≤ xy ≤ 10 000) on a Cartesian plane. All ant colonies and apple trees occupy distinct points on a plane. No three points are on the same line.

Output

Write to the output file n lines with one integer number on each line. The number written on i-th line denotes the number (from 1 to n) of the apple tree that is connected to the i-th ant colony.

Sample Input

5
-42 58
44 86
7 28
99 34
-13 -59
-47 -44
86 74
68 -75
-68 60
99 -60

Sample Output

4
2
1
5
3

AC代码如下：

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
double lx[110],ly[110],w[110][110],slack[110],x_1[110],y_1[110],x_2[110],y_2[110],eps=1e-9;
bool visx[110],visy[110];
int dcmp(double x){return (x>eps)-(x<-eps);}
bool Find(int x)
{
int y;
double t;
visx[x]=1;
for(y=1;y<=ny;y++)
if(!visy[y])
{
t=lx[x]+ly[y]-w[x][y];
if(dcmp(t)==0)
{
visy[y]=1;
{
return true;
}
}
else if(slack[y]>t)
slack[y]=t;
}
return false;
}
void KM()
{
int i,j,k,x,y;
double d;
memset(ly,0,sizeof(ly));
for(i=1;i<=nx;i++)
{
lx[i]=-INF;
for(j=1;j<=ny;j++)
lx[i]=max(lx[i],w[i][j]);
}
for(i=1;i<=nx;i++)
{
for(j=1;j<=ny;j++)
slack[j]=INF;
while(true)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy));
if(Find(i))
break;
d=INF;
for(j=1;j<=ny;j++)
if(!visy[j] && d>slack[j])
d=slack[j];
for(j=1;j<=nx;j++)
if(visx[j])
lx[j]-=d;
for(j=1;j<=ny;j++)
if(visy[j])
ly[j]+=d;
else
slack[j]-=d;
}
}
}
int main()
{
int i,j,k;
while(~scanf("%d",&n))
{
nx=ny=n;
for(i=1;i<=n;i++)
scanf("%lf%lf",&x_2[i],&y_2[i]);
for(i=1;i<=n;i++)
scanf("%lf%lf",&x_1[i],&y_1[i]);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
w[i][j]=-sqrt((x_1[i]-x_2[j])*(x_1[i]-x_2[j])+(y_1[i]-y_2[j])*(y_1[i]-y_2[j]));
KM();
for(i=1;i<=n;i++)
}
}


#### poj 3565 Ants （KM算法）

2017-04-12 07:03:13

#### poj 3565 Ants KM

2014-12-06 00:25:20

#### POJ 3565 Ants （KM）

2015-10-05 22:26:35

#### poj 3686The Windy's KM算法经典题

2015-12-08 16:41:12

#### POJ 3565 Ants（计算几何，KM）

2012-08-20 12:43:28

#### POJ 3565 Ants (证明+KM算法)

2014-04-22 08:48:18

#### 【POJ 2195】 Going Home（KM算法求最小权匹配）

2016-01-24 16:08:34

#### UVa 1411 Ants(KM)

2014-06-04 22:49:53

#### POJ 1852 Ants(弹性碰撞问题)

2015-11-13 17:24:07