tf.trainable_variables和tf.all_variables的对比

本文介绍了TensorFlow中tf.trainable_variables和tf.all_variables函数的区别与用法。通过实例演示了如何使用这两个函数来获取训练模型中的变量列表,并展示了如何指定变量是否参与训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.trainable_variables返回的是需要训练的变量列表

tf.all_variables返回的是所有变量的列表

例如:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  

v = tf.Variable(tf.constant(0.0, shape=[1], dtype=tf.float32), name='v')
v1 = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='v1')

global_step = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='global_step', trainable=False)
ema = tf.train.ExponentialMovingAverage(0.99, global_step)

for ele1 in tf.trainable_variables():
	print ele1.name
for ele2 in tf.all_variables():
	print ele2.name
输出:

v:0
v1:0


v:0
v1:0
global_step:0


分析:

上面得到两个变量,后面的一个得到上三个变量,因为global_step在声明的时候说明不是训练变量,用来关键字trainable=False。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值