tf.nn.embedding_lookup函数的用法主要是选取一个张量里面索引对应的元素。tf.nn.embedding_lookup(tensor, id):tensor就是输入张量,id就是张量对应的索引,其他的参数不介绍。
例如:
import tensorflow as tf;
import numpy as np;
c = np.random.random([10,1])
b = tf.nn.embedding_lookup(c, [1, 3])
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print sess.run(b)
print c
输出:
[[ 0.77505197]
[ 0.20635818]]
[[ 0.23976515]
[ 0.77505197]
[ 0.08798201]
[ 0.20635818]
[ 0.37183035]
[ 0.24753178]
[ 0.17718483]
[ 0.38533808]
[ 0.93345168]
[ 0.02634772]]
分析:输出为张量的第一和第三个元素。