基于HOG特征的Adaboost行人检测

该博客介绍了如何利用HOG特征和Adaboost进行行人检测。内容涉及HOG特征的原理,Adaboost的基础知识,以及在训练过程中采用logistic弱分类器对每个block进行分类的细节。实验注意事项包括处理adaboost误差率、带权重的logistic回归以及可能的数据反转问题。博客还包含了实验总结和猜想。
摘要由CSDN通过智能技术生成

  1.方向梯度直方图Histogramof Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。基本知识可以参考博客:http://blog.csdn.net/zouxy09/article/details/7929348

  2.Adaboost的基础知识可以参考书籍:统计学习方法,第八章-提升方法adaboost。

  这里利用HOG来训练Adaboost行人检测。Haar-Adaboost算法中,弱分类器仅对一维分类。但是在Hog特征中,特征是每个block的串联。如果仅对一维分类(一个cell的其中一个方向的权值),就不能有效利用block的归一化效果。所以我们使用logistic弱分类器对每个block进行分类(实验中,每个block包含4cell,每个cell9bin,即36维特征)。

  本实验需要注意的地方:

   1.  adaboost误差率需要计算权重

   2.  logistic回归需要使用带权重的logistic分类器

   3.  logistic分类可能与数据分布相反。需要计算两次。(相反的情况下,拟合没有意义,需要将数据反转(1->0,0->1))

  发现总结与问题

  1. 公理 1.  对于任何数据的二值分类,能够得到大于等于 0.5 的线性分类器。
  2. 推论 对于任何带权重数据的二值分类,能够得到大于等于 0.5 的线性分类器。
  3. 推论?   对于任何带权重数据的 n 值分类,能够得到大于等于 1/n 的线性分类器。
  4. 对于与 logistic 函数分布相反的数据,应该如何处理?(本实验的处理方式如前面所述)。

 实验结果后的猜想

ß 猜想 1 Adaboost 弱分类器所选取的特征仍然要保持一定的颗粒度。像素级的特征是无效的。

 实验结果与分析

  训练集 : 500/500 ;测试集 : 19/22(200个弱分类器)
  测试数据较少,但是训练集的高正确率至少证明其能够由弱分类器(错误率普遍在
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值