- 博客(27)
- 收藏
- 关注
原创 一文搞懂聚类算法:与分类算法的本质区别
想象一下,你有一大堆五颜六色的球,红的、蓝的、绿的……它们都混在一起。现在,你要做的就是根据颜色把这些球分成不同的组,红色的放一堆,蓝色的放一堆,绿色的放一堆。在机器学习中,聚类算法干的就是类似的事儿,只不过它处理的是数据,而不是球。聚类算法是一种无监督学习算法,它不需要我们提前告诉它数据应该分成几类,或者每一类是什么样的。把相似的数据点自动分到同一组,让同一组(簇cluster)内的数据尽可能相似,不同组的数据尽可能不同👏。
2025-06-13 15:58:12
271
原创 决策树家族:DecisionTreeClassifier 与 DecisionTreeRegressor 全解析
和是 scikit-learn 中非常实用的决策树模型,分别用于分类和回归问题。它们具有简单直观、易于理解等优点,但也容易过拟合。通过合理设置参数,我们可以有效地控制模型的复杂度,提高模型的泛化能力。
2025-06-13 08:00:00
314
原创 决策树剪枝:让你的决策树更“聪明”
决策树剪枝,简单来说,就是对决策树进行“修剪”,去掉一些不必要的分支,让决策树变得更简洁、更高效🌳。就像修剪树木一样,去掉多余的枝叶,让树木能更好地生长。决策树剪枝是提高决策树模型泛化能力的重要手段。预剪枝和后剪枝各有优缺点,我们可以根据具体的数据集和任务需求选择合适的剪枝方法。在实际应用中,我们可以通过交叉验证等方法来选择最优的剪枝参数,以获得性能最好的决策树模型😎。实用建议数据量小 → 优先后剪枝:充分利用有限数据(如CCP/PEP)数据量大 → 考虑预剪枝:减少计算开销(设置。
2025-06-12 15:12:16
691
原创 决策树三剑客:CART、ID3、C4.5全解析(附代码)
ID3:信息增益的先驱,简单但有局限C4.5:ID3的升级版,支持连续特征和剪枝CART:强大的二叉树算法,支持分类和回归。
2025-06-12 07:45:00
413
原创 一招搞定分类问题!决策树算法原理与实战详解(附Python代码)
问题1:"是哺乳动物吗?" → 是 → 进入分支A问题2:"有羽毛吗?" → 否 → 进入分支B→ 最终猜出「老虎」🐯决策树根节点:核心问题(如"X1>5吗?")内部节点:分支判断条件,表示一个属性上的判断代表一个判断结果输出叶节点:最终分类决策结果所以决策树的本质是一颗由多个判断节点组成的树。优点缺点🚀 训练和预测速度快⚠️ 容易过拟合(需剪枝)📝 规则清晰可解释🔀 对数据微小变化敏感(不稳定)
2025-06-11 15:01:06
964
原创 回归模型评估三剑客:MSE、RMSE、MAE大揭秘!
结合业务场景🏥 医疗:MAE > RMSE > MSE🚗 自动驾驶:MSE > RMSE > MAE🛒 电商推荐:MAE ≈ RMSE > MSE📢最后的话看完这篇,你已经掌握了回归评估的"三板斧"!下次面试被问到"如何评估回归模型",记得自信地说:"我会用MSE、RMSE、MAE从三个角度综合评估,并结合业务需求选择主指标!" 💼💪。
2025-06-10 14:52:58
642
原创 线性回归:机器学习的“新手村通关秘籍“!
学习路径graph TDA[线性回归] --> B[理解机器学习核心]A --> C[掌握基础算法]A --> D[建立数据思维]B --> E[后续学习更轻松]C --> F[能解决实际问题]D --> G[成为数据达人]关键收获🔍 学会用数学建模解决实际问题📊 掌握模型评估的基本方法🧠 理解机器学习的"调参艺术"学习建议👩💻 多动手:从简单案例开始实现📈 多可视化:用图表理解数据关系🤔 多思考:为什么这个特征重要?现在你已经掌握了机器学习的"新手村通关秘籍"!
2025-06-09 14:39:25
889
原创 七种距离度量全解析:从氏到汉明,算法选得好,模型搓澡不费脑!
欧氏距离:直来直去的老铁曼哈顿距离:靠谱的出租车司机切比雪夫距离:警惕的棋手闵可夫斯基距离:多变的变形金刚马氏距离:高冷的贵族标准化欧氏距离:健身达人汉明距离:二进制世界的极客没有最好的距离,只有最适合的距离!下次当你构建模型时,不妨先想想:"我的数据更适合和哪种距离做朋友呢?"🤔📌 关注我,获取更多机器学习硬核干货!如果你有想了解的算法或技术,欢迎在评论区留言,我会考虑把它变成下一篇"爆款"文章哦!👇。
2025-06-09 10:13:41
730
原创 机器学习KNN算法全解析:从原理到实战
KNN(K-Nearest Neighbors,K最近邻)是最直观的机器学习算法之一,核心思想就是一个样本的类别由其最近的K个邻居决定。比如要判断新同学是“学霸”还是“学渣”,只需看他最常一起玩的K个朋友属于哪类。算距离:计算测试样本与所有训练样本的距离(常用欧氏距离📏);找邻居:选取距离最小的K个样本;数票数:统计K个邻居中各类别的数量;做决策:将测试样本归为票数最多的类别(分类)或邻居的平均值(回归)💡。
2025-06-06 17:05:01
1468
原创 机器学习算法大分类,一篇读懂监督、无监督、半监督和强化学习!
宝子们,今天咱们一起了解了机器学习算法里的四大门派——监督学习、无监督学习、半监督学习和强化学习😃。监督学习就像有老师指导的学生,无监督学习是自己探索的探索者,半监督学习是“半吊子”的聪明学生,强化学习则是爱“打游戏”的智能体。它们在不同的场景下都有各自的优势和应用。希望这篇文章能让你对机器学习算法有更清晰的认识🤗。如果你还有其他关于机器学习的问题,欢迎在评论区留言讨论哦👏!咱们下期再见啦👋!
2025-06-06 08:30:00
664
原创 机器学习大揭秘:从原理到实战,一篇搞定!
简单来说,机器学习就是让计算机像人一样学习🧠。想象一下,你教小朋友认苹果,一开始给他看各种苹果的图片,告诉他这是苹果,那是苹果,慢慢地,小朋友就能自己认出苹果啦🍎。机器学习也是这个道理,我们给计算机一大堆数据,告诉它这些数据和对应的“答案”(比如是苹果还是香蕉),计算机通过不断地学习和“总结”,就能在面对新的数据时,给出正确的“答案”。打个比方,机器学习就像是一个超级聪明的“小助手”🤖,它可以从海量的数据中挖掘出规律和模式,然后利用这些规律来预测未来、解决问题。
2025-06-05 16:42:11
583
原创 AI开发者必备:镜像源详解与国内七大镜像源全面评测(附配置指南)
镜像源是人工智能开发和系统维护中的得力助手🤝,通过合理选择和使用镜像源,我们可以大大提高软件包和系统更新的下载速度,提升开发效率。不同的镜像源各有优缺点,大家可以根据自己的需求和网络环境选择适合自己的镜像源。希望今天的分享能对大家有所帮助😃!如果你还有其他关于人工智能开发的问题,欢迎在评论区留言讨论哦👏!以上就是今天关于人工智能中镜像源的分享啦🎈!咱们下期再见啦👋!
2025-06-05 14:31:48
776
原创 CPU 与 GPU:人工智能领域的“双雄争霸”
宝子们👋,在人工智能这个充满奇幻色彩的科技世界里,CPU 和 GPU 就像两位超级英雄,各自有着独特的本领,在各种场景中大显身手。今天咱就来深入了解一下它们到底是啥,工作原理如何,有啥区别,怎么找到它们,它们之间啥关系,还有在人工智能领域啥时候用 CPU,啥时候用 GPU🧐。
2025-06-04 17:22:51
1073
原创 深度学习损失函数大揭秘:从原理到代码,一文搞定!
损失函数原理适用场景Softmax将原始分数转换为概率分布分类任务中模型输出层,将 logits 转换为概率交叉熵损失衡量模型预测概率分布和真实概率分布之间的差异分类任务,尤其是多分类任务MAE 损失计算预测值和真实值之间差的绝对值的平均值回归任务,也可用于简单分类概率回归理解MSE 损失计算预测值和真实值之间差的平方的平均值回归任务,也可用于理解损失函数设计Smooth L1 损失融合 MAE 和 MSE 的优点,对小错误和较大错误有不同惩罚方式目标检测等任务。
2025-06-04 16:45:20
571
原创 GRU:LSTM的“轻量级”好兄弟来啦!
好啦,今天关于GRU的分享就到这里啦!相信通过这篇文章,你已经对GRU有了更深入的了解。GRU就像是LSTM的“轻量级”好兄弟,凭借其简化的结构和高效的性能,在序列数据处理领域也能大放异彩。如果你也对序列数据处理感兴趣,不妨动手试试GRU吧!说不定你也能用它创造出一些有趣的应用呢!咱们下期再见啦!👋。
2025-06-03 17:21:34
1119
原创 深度揭秘LSTM:RNN的“记忆大师”养成之路
LSTM 作为 RNN 的 “进化版”,通过遗忘门、输入门等结构,解决了长序列记忆的难题,在 NLP、时间序列等领域大显身手。但它也不是完美的,计算复杂度比 RNN 高,训练起来更费时间和算力,就像学霸虽然成绩好,但也得花更多时间学习不是😉如果你也对序列数据处理感兴趣,不妨动手试试LSTM吧!说不定你也能用它创造出一些有趣的应用呢!🎁: 下期预告:《GRU:我比LSTM少1个门,但得更快!》👉 关注不迷路~
2025-06-03 16:57:41
464
原创 深度学习“记忆大师”——RNN模型大揭秘
宝子们,RNN模型就像深度学习江湖中的一位“记忆大师”,凭借它独特的循环结构,在处理序列数据方面有着独特的优势。虽然它有长期依赖这个“小烦恼”,但它的改进模型LSTM和GRU已经很好地解决了这个问题。在未来的深度学习应用中,RNN及其改进模型还会在更多的领域发光发热。希望今天对RNN的介绍能让大家对这个神奇的模型有更深入的了解😜!
2025-05-30 17:01:43
921
原创 深度学习“双雄”:分类任务与回归任务大揭秘
宝子们,欢迎来到深度学习的神秘世界!在这个充满奇妙算法和神奇模型的世界里,有两个“超级英雄”经常闪亮登场,它们就是分类任务和回归任务。今天咱就一起揭开它们的神秘面纱,看看它们到底有啥本事😎。
2025-05-30 16:14:25
656
原创 深度学习“炼丹”实战:用LeNet驯服MNIST“神兽”
宝子们,今天咱们用LeNet模型在MNIST数据集上“炼丹”的过程是不是超有趣?通过这个实战,咱们不仅掌握了LeNet模型的结构和实现,还学会了如何用PyTorch框架进行模型训练和评估。深度学习就像一场奇妙的“炼丹之旅”,每一次尝试都可能带来意想不到的收获。希望你们也能在这个充满挑战和惊喜的世界里,不断探索,炼制出更多更强大的“神奇丹药”!💪好啦,今天的“炼丹”分享就到这里啦,咱们下次再见!👋。
2025-05-29 17:16:44
1282
原创 深度学习常用激活函数:炼丹界的“十八般武艺”
在深度学习的炼丹江湖里,选择合适的激活函数就像给我们的模型挑选一件称手的“神兵利器”。二分类问题输出层,Sigmoid 函数这位老江湖偶尔还能露两手;多分类问题输出层,SoftMax 函数这位皇帝稳坐江山;回归问题输出层,Identity 函数这个小精灵默默发挥作用;而隐藏层中,ReLU 及其小伙伴 LeakReLU、ELU 等就像各路武林高手,各有各的绝招,我们要根据具体的“江湖形势”(数据特点和任务需求)来选择最合适的那一位。如果选不好优先选RELU,效果不好选Leaky RELU等。
2025-05-29 16:25:05
1151
原创 深度学习图像分类六大经典网络结构全解析:从LeNet到Transformer的炼丹进化史
从LeNet到ResNet,深度学习炼丹术已经从“青铜时代”进化到“外挂时代”。未来,我会继续分享更多。
2025-05-28 17:48:37
561
原创 深度学习数据集探秘:从炼丹到实战的进阶之路(与CNN的奇妙联动)
正如炼丹需要"天材地宝",深度学习的突破离不开高质量数据集的支撑。从MNIST的"入门试炼"到ImageNet的"巅峰对决",这些数据集不仅是模型的"训练场",更是推动AI技术进化的"燃料"。下一次当你调整CNN的超参数时,不妨想想:你正在用怎样的"药材",炼制属于你的AI"灵丹"?📌互动话题:你在项目中用过哪些数据集?欢迎在评论区分享你的"炼丹心得"!延伸阅读《深度学习笔记:超萌玩转卷积神经网络(CNN)(炼丹续篇)》希望这篇文章能帮你打通数据集与CNN的"任督二脉"!
2025-05-28 14:29:18
1158
原创 深度学习笔记:超萌玩转卷积神经网络(CNN)(炼丹续篇)
经过前面的步骤,咱们的“丹药”终于要炼成啦!全连接层就像炼丹炉的“出丹口”,它把前面提取的特征整合起来,做出最终的判断(分类或回归)。它会综合考虑所有的特征,就像咱们判断一颗丹药是否炼成一样,要综合考虑颜色、气味、形状等多个方面,然后给出一个最终的“成丹”结果!宝子们,咱们这趟“炼丹”之旅是不是越来越有趣啦?从深度学习这口“大炼丹炉”,到CNN这位“炼丹小能手”,咱们一步步揭开了它们的神秘面纱。
2025-05-26 16:14:19
800
原创 深度学习笔记:从零开始的“炼丹”之旅
本文为零基础读者定制深度学习入门指南。首先拆解神经网络三层结构,结合猫狗分类案例,用Keras代码演示CNN模型搭建(卷积层+池化层+全连接层),并解析关键参数(如输入尺寸28x28、激活函数ReLU)。训练环节聚焦数据集划分(8:1:1)与fit()参数调优(epochs/batch_size),同步给出三大常见问题解决方案:过拟合用Dropout+正则化,梯度异常用ReLU+BatchNorm,资源不足用模型剪枝+分布式训练。最后预告后续将发布实战项目(如MNIST手写体识别),适合AI初学者快速上手。
2025-05-23 14:45:08
596
原创 qtp学习-用三种方式登录-录制、直接描述、Description方法
SystemUtil.Run "iexplore.exe","此处输入网址", "","",3Browser("xxx").Page("xxx").WebEdit("属性值").Set"用户名"Browser("xxx).Page("xxx").WebEdit("属性值").Set"密码"Browser("xxx").Page("xxx').WebElement("属性值").C
2016-08-18 16:57:38
914
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人