编程之美-重建二叉树扩展问题1 2

编程之美3.9:重建二叉树

扩展问题1:如果前序和中序遍历的字母有重复的,那么怎么构造所有可能的解呢?

扩展问题2:如何判断给定的前序遍历和中序遍历的结果是合理的?


思路:

问题1:搜索所有可能的情况,并调用扩展问题2的解决方案,判断此情况是否合理(剪枝操作),如果合法,则构造解

问题2:递归判断左右子树是否合理,递归的返回条件是到达叶子节点。

代码及测试情况如下:

/*
 * 编程之美重建二叉树,扩展问题1,2
 * 扩展问题1:如果前序和中序的字母可能是相同的,怎么重构出所有可能的解?
 * 扩展问题2:如何判断给定的前序和中序遍历的结果是合理的?
 *
 * */

#include <iostream>
#include <string>
using namespace std;

struct Node
{
        Node *left;
        Node *right;
        char value;
};

void pre_travel(Node *p)
{
        if(p == NULL)
                return;
        cout << p->value << endl;
        pre_travel(p->left);
        pre_travel(p->right);
}


//枚举所有的情况,递归判断是否合法,如果递归到只剩一个叶子节点
//则肯定是合法的
bool isvalid(const char *preorder, const char *inorder, int len)
{
        const char *leftend = inorder;

        if(len == 1)
                return true;

        for(int i=0; i<len; i++, leftend++){
                if(*leftend == *preorder){
                        int leftlen = leftend - inorder;
                        int rightlen = len - leftlen - 1;               

                        bool lres = false, rres = false;
                        if(leftlen > 0){
                                lres = isvalid(preorder+1, inorder, leftlen);
                        }               
                        if(rightlen > 0){
                                rres = isvalid(preorder+leftlen+1, inorder+leftlen+1, rightlen);
                        }
        
                        //如果leftlen和rightlen都大于零,则lres和rres必须都为true,此分割方法才算合法           
                        if((leftlen > 0 && rightlen >0 && lres && rres) || 
                        (leftlen > 0 && rightlen <=0 && lres) || (left <=0 && rightlen > 0 && rres)){
                                return true;    
                        }
                }
        }

        return false;   
}


//枚举法,在枚举的同时使用isvalid函数,排除非法情况
void rebuild(const char *preorder, const char *inorder, int len, Node **root)
{
        if(preorder == NULL || inorder == NULL)
                return;

        if(*root == NULL){
                Node *temp = new Node;
                temp->left = NULL;
                temp->right = NULL;
                temp->value = *preorder;
                *root = temp;
        }

        if(len == 1)
                return;

        const char *leftend = inorder;

        for(int i=0; i<len; i++, leftend++){
                if(*leftend == *preorder){
                        int leftlen = leftend - inorder;
                        int rightlen = len - leftlen - 1;

                        if(leftlen > 0  && rightlen >0){
                                if(isvalid(preorder+1, inorder, leftlen) && isvalid(preorder+leftlen+1, inorder+leftlen+1, rightlen)){
                                        rebuild(preorder+1, inorder, leftlen, &((*root)->left));
                                        rebuild(preorder+leftlen+1, inorder+leftlen+1, rightlen, &((*root)->right));
                                }
                        }else if(leftlen > 0 && rightlen <= 0){
                                if(isvalid(preorder+1, inorder, leftlen))
                                        rebuild(preorder+1, inorder, leftlen, &((*root)->left));
                        }else if(leftlen <=0 && rightlen >0){
                                if(isvalid(preorder+leftlen+1, inorder+leftlen+1, rightlen))
                                        rebuild(preorder+leftlen+1, inorder+leftlen+1, rightlen, &((*root)->right));
                        }
                        
                }
        }
}

int main()
{
        string pre1 = "abdefc";
        string mid1 = "dbfeac";

        string pre2 = "abdefc";
        string mid2 = "dcfeab";

        //有重复的字母
        string pre3 = "aadcef";
        string mid3 = "daaecf";

        bool valid = isvalid(pre1.c_str(), mid1.c_str(), pre1.length());
        cout << valid << endl;

        valid = isvalid(pre2.c_str(), mid2.c_str(), pre2.length());
        cout << valid << endl;
        
        valid = isvalid(pre3.c_str(), mid3.c_str(), pre3.length());
        cout << valid << endl;
       
        Node *root = NULL;
        rebuild(pre3.c_str(), mid3.c_str(), 6, &root);
        pre_travel(root);
 
        return 0;
}



智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值