支持向量机入门系列-2:等式约束极小的最优性条件

本文介绍了支持向量机的优化问题,特别是如何处理仅包含等式约束的最优化问题。通过构建拉格朗日函数,将目标函数与约束条件相结合,寻找最优解的必要条件。对于一个包含等式约束的最优化问题,通过拉格朗日乘子法,得出最优点满足的必要和充分条件。这为解决更复杂的包含不等式约束的问题奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

对支持向量机的求解都是将上节说的原问题转化为对偶问题进行求解的,这些内容都是最优化课程中的内容。

 

回忆上节的内容,我们的目标是寻找函数在若干约束条件下的最小值。在上节的原问题中,约束条件是包含不等式的,本节先考虑简单的问题,即考虑只包含等式约束的最优化问题:

                               (1)

其中f(x)被称作目标函数,而下面是一系列的等式约束。回想一下,当没有任何约束存在的时候,应该怎样寻找最优点呢?事实上x*是最优点的必要条件是:

  

而如果函数f(x)是凸函数的话,这个条件也是充分条件(关于凸函数,请参考维基百科)。

 

插入一个说明,如果函数f(x)是一个实值函数,x是一个n维向量,那么f(x)对向量x的导数被定义为&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值