hdu5318 The Goddess Of The Moon (矩阵快速幂优化dp)

本文解析了一道编号为5318的HDU在线评测题目,该题要求计算由给定数字串通过特定规则拼接而成的串的不同组合数量。文章详细介绍了如何使用动态规划及矩阵快速幂的方法来高效解决此问题,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:http://acm.hdu.edu.cn/showproblem.php?pid=5318

题意:给定n个数字串和整数m,规定若数字串s1的后缀和数字串s2的前缀相同且长度≥2,则s2可以拼接在s1的后面,每个串可以重复用,问拼接m个数字串有多少种方法。n<=50,m<=1e9

分析:定义dp[i][j]为拼接了i个串并且这个长串以s[j](输入的第j个数字串)结尾的方案数。那么有

for(int i=1;i<=n;i++)
   dp[1][i]=1;
for(int i=2;i<=m;i++)
	for(int j=1;j<=n;j++)
		for(int k=1;k<=n;k++)
			if(connect(j,k))
				dp[i][j]+=dp[i-1][k];

     然后,之前很早有人跟我讲过用矩阵可以算路径数,,,,,,。可以利用上述递推式构造矩阵从而快速计算出结果。定义:A矩阵里面的元素ai表示以s[i]结尾的串的方案数。B矩阵bij表示s[j]可以拼接在s[i]的后面。那么结果矩阵就是A*B^(m-1);

例如:n=2,m=5,s[1]="322",s[2]="22",那么

A={1,1}
B={1,1,
   0,1}

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
const int maxn = 55;
const int mod = 1000000007;
int N,M,use[100];
char s1[20],s2[20];
struct Matrix
{
	long long M[maxn][maxn];
	Matrix(){memset(M,0,sizeof(M));}
}U,P;
Matrix Multi(Matrix &a,Matrix &b)
{
	Matrix ans;
	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++)
			for(int k=0;k<N;k++)
				ans.M[i][j]=(ans.M[i][j]+a.M[i][k]*b.M[k][j])%mod;
	return ans;
}
Matrix Power(Matrix a,int n)
{
	Matrix ans=U;
	while(n)
	{
		if(n&1)
			ans=Multi(ans,a);
		n>>=1;
		a=Multi(a,a);
	}
	return ans;
}
bool Match(int a,int b)  //ok
{
	sprintf(s1,"%d",a);
	sprintf(s2,"%d",b);
	int len1=strlen(s1),len2=strlen(s2);
	for(int i=len1-1,j=0;i>=0 && j<len2;i--,j++)
		if(len1-i>=2 && string(s1+i,s1+len1)==string(s2,s2+j+1))
			return true;
	return false;
}
void Init()
{
	memset(P.M,0,sizeof(P.M));
	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++)
			if(Match(use[i],use[j]))
				P.M[i][j]=1;
}
long long GetAns(Matrix &ans)
{
	long long ret=0;
	for(int i=0;i<N;i++)
		for(int j=0;j<N;j++)
			ret+=ans.M[i][j];
	return ret%mod;
}
int main()
{
	for(int i=0;i<maxn;i++)
		U.M[i][i]=1;
	int ncase,i,j;
	scanf("%d",&ncase);
	while(ncase--)
	{
		scanf("%d%d",&N,&M);
		for(i=0;i<N;i++)
			scanf("%d",&use[i]);
		sort(use,use+N);
		N=unique(use,use+N)-use;
		Init();
		Matrix ans=Power(P,M-1);
		printf("%I64d\n",GetAns(ans));
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值