定理:n元一次不定方程x1a1+x2a2+....+xnan=c(所有系数为整数),有解的充分必要条件是gcd(a1,a2,.....,an)|c。
求n元一次不定方程的解:解n元一次不定方程时,可先顺次求出gcd(a1,a2)=d2,gcd(d2,a3)=d3,gcd(d3,a4)=d4,......若dn|c,则方程有解。作方程组
x1a1+x2a2=d2t2
d2t2+x3a3=d3t3
....
d(n-1)t(n-1)+xnan=c
求出最后一个方程的所有解,然后把t(n-1)的每一个值代入倒数第二个方程,求出它的所有解,以此类推,即可的方程的所有解。
m个n元一次方程组成的方程组,其中m<n,可以消去m-1个未知数。从而消去m-1个不定方程,将方程组转化为一个n-m+1元的一次不定方程。
题目:poj.org/problem?id=1091